生物医学文献中蛋白质残基关联提取的远程监督模式学习

K. Ravikumar, Haibin Liu, J. Cohn, M. Wall, Karin M. Verspoor
{"title":"生物医学文献中蛋白质残基关联提取的远程监督模式学习","authors":"K. Ravikumar, Haibin Liu, J. Cohn, M. Wall, Karin M. Verspoor","doi":"10.1109/ICMLA.2011.112","DOIUrl":null,"url":null,"abstract":"We propose a method enabling automatic extraction of protein-specific residues from the biomedical literature. We aim to associate mentions of specific amino acids to the protein of which the residue forms a part. The methods presented in this work will enable improved protein functional site extraction from articles, ultimately supporting protein function prediction. Our method made use of linguistic patterns for identifying the amino acid residue mentions in text. Further, we applied an automated graph-based method to learn syntactic and semantic patterns corresponding to protein-residue pairs mentioned in the text. On a new automatically generated data set of high confidence protein-residue relationship sentences, established through distant supervision, the method achieved a F-measure of 0.78. This work will pave the way to improved extraction of protein functional residues from the literature.","PeriodicalId":439926,"journal":{"name":"2011 10th International Conference on Machine Learning and Applications and Workshops","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Pattern Learning through Distant Supervision for Extraction of Protein-Residue Associations in the Biomedical Literature\",\"authors\":\"K. Ravikumar, Haibin Liu, J. Cohn, M. Wall, Karin M. Verspoor\",\"doi\":\"10.1109/ICMLA.2011.112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a method enabling automatic extraction of protein-specific residues from the biomedical literature. We aim to associate mentions of specific amino acids to the protein of which the residue forms a part. The methods presented in this work will enable improved protein functional site extraction from articles, ultimately supporting protein function prediction. Our method made use of linguistic patterns for identifying the amino acid residue mentions in text. Further, we applied an automated graph-based method to learn syntactic and semantic patterns corresponding to protein-residue pairs mentioned in the text. On a new automatically generated data set of high confidence protein-residue relationship sentences, established through distant supervision, the method achieved a F-measure of 0.78. This work will pave the way to improved extraction of protein functional residues from the literature.\",\"PeriodicalId\":439926,\"journal\":{\"name\":\"2011 10th International Conference on Machine Learning and Applications and Workshops\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 10th International Conference on Machine Learning and Applications and Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2011.112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 10th International Conference on Machine Learning and Applications and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2011.112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们提出了一种从生物医学文献中自动提取蛋白质特异性残基的方法。我们的目标是将特定氨基酸的提及与残基组成部分的蛋白质联系起来。这项工作中提出的方法将使从文章中提取蛋白质功能位点成为可能,最终支持蛋白质功能预测。我们的方法利用语言模式来识别文本中提到的氨基酸残基。此外,我们应用了一种自动化的基于图的方法来学习与文本中提到的蛋白质残基对相对应的语法和语义模式。在通过远程监督建立的自动生成的高置信度蛋白质-残基关系句子数据集上,该方法的f值为0.78。这项工作将为改进从文献中提取蛋白质功能残基铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pattern Learning through Distant Supervision for Extraction of Protein-Residue Associations in the Biomedical Literature
We propose a method enabling automatic extraction of protein-specific residues from the biomedical literature. We aim to associate mentions of specific amino acids to the protein of which the residue forms a part. The methods presented in this work will enable improved protein functional site extraction from articles, ultimately supporting protein function prediction. Our method made use of linguistic patterns for identifying the amino acid residue mentions in text. Further, we applied an automated graph-based method to learn syntactic and semantic patterns corresponding to protein-residue pairs mentioned in the text. On a new automatically generated data set of high confidence protein-residue relationship sentences, established through distant supervision, the method achieved a F-measure of 0.78. This work will pave the way to improved extraction of protein functional residues from the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信