K. Ravikumar, Haibin Liu, J. Cohn, M. Wall, Karin M. Verspoor
{"title":"生物医学文献中蛋白质残基关联提取的远程监督模式学习","authors":"K. Ravikumar, Haibin Liu, J. Cohn, M. Wall, Karin M. Verspoor","doi":"10.1109/ICMLA.2011.112","DOIUrl":null,"url":null,"abstract":"We propose a method enabling automatic extraction of protein-specific residues from the biomedical literature. We aim to associate mentions of specific amino acids to the protein of which the residue forms a part. The methods presented in this work will enable improved protein functional site extraction from articles, ultimately supporting protein function prediction. Our method made use of linguistic patterns for identifying the amino acid residue mentions in text. Further, we applied an automated graph-based method to learn syntactic and semantic patterns corresponding to protein-residue pairs mentioned in the text. On a new automatically generated data set of high confidence protein-residue relationship sentences, established through distant supervision, the method achieved a F-measure of 0.78. This work will pave the way to improved extraction of protein functional residues from the literature.","PeriodicalId":439926,"journal":{"name":"2011 10th International Conference on Machine Learning and Applications and Workshops","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Pattern Learning through Distant Supervision for Extraction of Protein-Residue Associations in the Biomedical Literature\",\"authors\":\"K. Ravikumar, Haibin Liu, J. Cohn, M. Wall, Karin M. Verspoor\",\"doi\":\"10.1109/ICMLA.2011.112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a method enabling automatic extraction of protein-specific residues from the biomedical literature. We aim to associate mentions of specific amino acids to the protein of which the residue forms a part. The methods presented in this work will enable improved protein functional site extraction from articles, ultimately supporting protein function prediction. Our method made use of linguistic patterns for identifying the amino acid residue mentions in text. Further, we applied an automated graph-based method to learn syntactic and semantic patterns corresponding to protein-residue pairs mentioned in the text. On a new automatically generated data set of high confidence protein-residue relationship sentences, established through distant supervision, the method achieved a F-measure of 0.78. This work will pave the way to improved extraction of protein functional residues from the literature.\",\"PeriodicalId\":439926,\"journal\":{\"name\":\"2011 10th International Conference on Machine Learning and Applications and Workshops\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 10th International Conference on Machine Learning and Applications and Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2011.112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 10th International Conference on Machine Learning and Applications and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2011.112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pattern Learning through Distant Supervision for Extraction of Protein-Residue Associations in the Biomedical Literature
We propose a method enabling automatic extraction of protein-specific residues from the biomedical literature. We aim to associate mentions of specific amino acids to the protein of which the residue forms a part. The methods presented in this work will enable improved protein functional site extraction from articles, ultimately supporting protein function prediction. Our method made use of linguistic patterns for identifying the amino acid residue mentions in text. Further, we applied an automated graph-based method to learn syntactic and semantic patterns corresponding to protein-residue pairs mentioned in the text. On a new automatically generated data set of high confidence protein-residue relationship sentences, established through distant supervision, the method achieved a F-measure of 0.78. This work will pave the way to improved extraction of protein functional residues from the literature.