收割者

Michalis Diamantaris, Elias P. Papadopoulos, E. Markatos, S. Ioannidis, Jason Polakis
{"title":"收割者","authors":"Michalis Diamantaris, Elias P. Papadopoulos, E. Markatos, S. Ioannidis, Jason Polakis","doi":"10.1145/3292006.3300027","DOIUrl":null,"url":null,"abstract":"Android's app ecosystem relies heavily on third-party libraries as they facilitate code development and provide a steady stream of revenue for developers. However, while Android has moved towards a more fine-grained run time permission system, users currently lack the required resources for deciding whether a specific permission request is actually intended for the app itself or is requested by possibly dangerous third-party libraries. In this paper we present Reaper, a novel dynamic analysis system that traces the permissions requested by apps in real time and distinguishes those requested by the app's core functionality from those requested by third-party libraries linked with the app. We implement a sophisticated UI automator and conduct an extensive evaluation of our system's performance and find that Reaper introduces negligible overhead, rendering it suitable both for end users (by integrating it in the OS) and for deployment as part of an official app vetting process. Our study on over 5K popular apps demonstrates the large extent to which personally identifiable information is being accessed by libraries and highlights the privacy risks that users face. We find that an impressive 65% of the permissions requested do not originate from the core app but are issued by linked third-party libraries, 37.3% of which are used for functionality related to ads, tracking, and analytics. Overall, Reaper enhances the functionality of Android's run time permission model without requiring OS or app modifications, and provides the necessary contextual information that can enable users to selectively deny permissions that are not part of an app's core functionality.","PeriodicalId":246233,"journal":{"name":"Proceedings of the Ninth ACM Conference on Data and Application Security and Privacy","volume":"163 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"REAPER\",\"authors\":\"Michalis Diamantaris, Elias P. Papadopoulos, E. Markatos, S. Ioannidis, Jason Polakis\",\"doi\":\"10.1145/3292006.3300027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Android's app ecosystem relies heavily on third-party libraries as they facilitate code development and provide a steady stream of revenue for developers. However, while Android has moved towards a more fine-grained run time permission system, users currently lack the required resources for deciding whether a specific permission request is actually intended for the app itself or is requested by possibly dangerous third-party libraries. In this paper we present Reaper, a novel dynamic analysis system that traces the permissions requested by apps in real time and distinguishes those requested by the app's core functionality from those requested by third-party libraries linked with the app. We implement a sophisticated UI automator and conduct an extensive evaluation of our system's performance and find that Reaper introduces negligible overhead, rendering it suitable both for end users (by integrating it in the OS) and for deployment as part of an official app vetting process. Our study on over 5K popular apps demonstrates the large extent to which personally identifiable information is being accessed by libraries and highlights the privacy risks that users face. We find that an impressive 65% of the permissions requested do not originate from the core app but are issued by linked third-party libraries, 37.3% of which are used for functionality related to ads, tracking, and analytics. Overall, Reaper enhances the functionality of Android's run time permission model without requiring OS or app modifications, and provides the necessary contextual information that can enable users to selectively deny permissions that are not part of an app's core functionality.\",\"PeriodicalId\":246233,\"journal\":{\"name\":\"Proceedings of the Ninth ACM Conference on Data and Application Security and Privacy\",\"volume\":\"163 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Ninth ACM Conference on Data and Application Security and Privacy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3292006.3300027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Ninth ACM Conference on Data and Application Security and Privacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3292006.3300027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
REAPER
Android's app ecosystem relies heavily on third-party libraries as they facilitate code development and provide a steady stream of revenue for developers. However, while Android has moved towards a more fine-grained run time permission system, users currently lack the required resources for deciding whether a specific permission request is actually intended for the app itself or is requested by possibly dangerous third-party libraries. In this paper we present Reaper, a novel dynamic analysis system that traces the permissions requested by apps in real time and distinguishes those requested by the app's core functionality from those requested by third-party libraries linked with the app. We implement a sophisticated UI automator and conduct an extensive evaluation of our system's performance and find that Reaper introduces negligible overhead, rendering it suitable both for end users (by integrating it in the OS) and for deployment as part of an official app vetting process. Our study on over 5K popular apps demonstrates the large extent to which personally identifiable information is being accessed by libraries and highlights the privacy risks that users face. We find that an impressive 65% of the permissions requested do not originate from the core app but are issued by linked third-party libraries, 37.3% of which are used for functionality related to ads, tracking, and analytics. Overall, Reaper enhances the functionality of Android's run time permission model without requiring OS or app modifications, and provides the necessary contextual information that can enable users to selectively deny permissions that are not part of an app's core functionality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信