面向Web新闻提取的自适应自底向上聚类方法

Jinlin Chen, S. Shankar, Angela M. Kelly, S. Gningue, Rathika Rajaravivarma
{"title":"面向Web新闻提取的自适应自底向上聚类方法","authors":"Jinlin Chen, S. Shankar, Angela M. Kelly, S. Gningue, Rathika Rajaravivarma","doi":"10.1109/WOCC.2009.5312904","DOIUrl":null,"url":null,"abstract":"An adaptive bottom up Web news extraction approach based on human perception is presented in this paper. The approach simulates how a human perceives and identifies Web news information by using an adaptive bottom up clustering strategy to detect possible news areas. It first detects news areas based on content function, space continuity, and formatting continuity of news information. It further identifies detailed news content based on the position, format, and semantic of detected news areas. Experiment results show that our approach achieves much better performance (in average more than 99% in terms of F1 Value) compared to previous approaches such as Tree Edit Distance and Visual Wrapper based approaches. Furthermore, our approach does not assume the existence of Web templates in the tested Web pages as required by Tree Edit Distance based approach, nor does it need training sets as required in Visual Wrapper based approach. The success of our approach demonstrates the strength of the perception based Web information extraction methodology and represents a promising approach for automatic information extraction from sources with presentation design for humans.","PeriodicalId":288004,"journal":{"name":"2009 18th Annual Wireless and Optical Communications Conference","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An adaptive bottom up clustering approach for Web news extraction\",\"authors\":\"Jinlin Chen, S. Shankar, Angela M. Kelly, S. Gningue, Rathika Rajaravivarma\",\"doi\":\"10.1109/WOCC.2009.5312904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An adaptive bottom up Web news extraction approach based on human perception is presented in this paper. The approach simulates how a human perceives and identifies Web news information by using an adaptive bottom up clustering strategy to detect possible news areas. It first detects news areas based on content function, space continuity, and formatting continuity of news information. It further identifies detailed news content based on the position, format, and semantic of detected news areas. Experiment results show that our approach achieves much better performance (in average more than 99% in terms of F1 Value) compared to previous approaches such as Tree Edit Distance and Visual Wrapper based approaches. Furthermore, our approach does not assume the existence of Web templates in the tested Web pages as required by Tree Edit Distance based approach, nor does it need training sets as required in Visual Wrapper based approach. The success of our approach demonstrates the strength of the perception based Web information extraction methodology and represents a promising approach for automatic information extraction from sources with presentation design for humans.\",\"PeriodicalId\":288004,\"journal\":{\"name\":\"2009 18th Annual Wireless and Optical Communications Conference\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 18th Annual Wireless and Optical Communications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WOCC.2009.5312904\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 18th Annual Wireless and Optical Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WOCC.2009.5312904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种基于人类感知的自适应自底向上Web新闻提取方法。该方法通过使用自适应自底向上聚类策略来检测可能的新闻区域,模拟人类如何感知和识别Web新闻信息。它首先根据新闻信息的内容功能、空间连续性和格式连续性来检测新闻区域。它进一步根据检测到的新闻区域的位置、格式和语义来识别详细的新闻内容。实验结果表明,与之前的方法(如基于Tree Edit Distance和Visual Wrapper的方法)相比,我们的方法取得了更好的性能(F1值平均超过99%)。此外,我们的方法不像基于树编辑距离的方法那样假设在测试的Web页面中存在Web模板,也不像基于Visual Wrapper的方法那样需要训练集。我们方法的成功展示了基于感知的Web信息提取方法的力量,并代表了一种有前途的方法,可以从具有人类表示设计的源中自动提取信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An adaptive bottom up clustering approach for Web news extraction
An adaptive bottom up Web news extraction approach based on human perception is presented in this paper. The approach simulates how a human perceives and identifies Web news information by using an adaptive bottom up clustering strategy to detect possible news areas. It first detects news areas based on content function, space continuity, and formatting continuity of news information. It further identifies detailed news content based on the position, format, and semantic of detected news areas. Experiment results show that our approach achieves much better performance (in average more than 99% in terms of F1 Value) compared to previous approaches such as Tree Edit Distance and Visual Wrapper based approaches. Furthermore, our approach does not assume the existence of Web templates in the tested Web pages as required by Tree Edit Distance based approach, nor does it need training sets as required in Visual Wrapper based approach. The success of our approach demonstrates the strength of the perception based Web information extraction methodology and represents a promising approach for automatic information extraction from sources with presentation design for humans.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信