水下环境下多视点声学图像的线特征三维重建

Ngoc Trung Mai, Hanwool Woo, Yonghoon Ji, Y. Tamura, A. Yamashita, H. Asama
{"title":"水下环境下多视点声学图像的线特征三维重建","authors":"Ngoc Trung Mai, Hanwool Woo, Yonghoon Ji, Y. Tamura, A. Yamashita, H. Asama","doi":"10.1109/MFI.2017.8170447","DOIUrl":null,"url":null,"abstract":"In order to understand the underwater environment, it is essential to use sensing methodologies able to perceive the three dimensional (3D) information of the explored site. Sonar sensors are commonly employed in underwater exploration. This paper presents a novel methodology able to retrieve 3D information of underwater objects. The proposed solution employs an acoustic camera, which represents the next generation of sonar sensors, to extract and track the line of the underwater objects which are used as visual features for the image processing algorithm. In this work, we concentrate on artificial underwater environments, such as dams and bridges. In these structured environments, the line segments are preferred over the points feature, as they can represent structure information more effectively. We also developed a method for automatic extraction and correspondences matching of line features. Our approach enables 3D measurement of underwater objects using arbitrary viewpoints based on an extended Kalman filter (EKF). The probabilistic method allows computing the 3D reconstruction of underwater objects even in presence of uncertainty in the control input of the camera's movements. Experiments have been performed in real environments. Results showed the effectiveness and accuracy of the proposed solution.","PeriodicalId":402371,"journal":{"name":"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"3D reconstruction of line features using multi-view acoustic images in underwater environment\",\"authors\":\"Ngoc Trung Mai, Hanwool Woo, Yonghoon Ji, Y. Tamura, A. Yamashita, H. Asama\",\"doi\":\"10.1109/MFI.2017.8170447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to understand the underwater environment, it is essential to use sensing methodologies able to perceive the three dimensional (3D) information of the explored site. Sonar sensors are commonly employed in underwater exploration. This paper presents a novel methodology able to retrieve 3D information of underwater objects. The proposed solution employs an acoustic camera, which represents the next generation of sonar sensors, to extract and track the line of the underwater objects which are used as visual features for the image processing algorithm. In this work, we concentrate on artificial underwater environments, such as dams and bridges. In these structured environments, the line segments are preferred over the points feature, as they can represent structure information more effectively. We also developed a method for automatic extraction and correspondences matching of line features. Our approach enables 3D measurement of underwater objects using arbitrary viewpoints based on an extended Kalman filter (EKF). The probabilistic method allows computing the 3D reconstruction of underwater objects even in presence of uncertainty in the control input of the camera's movements. Experiments have been performed in real environments. Results showed the effectiveness and accuracy of the proposed solution.\",\"PeriodicalId\":402371,\"journal\":{\"name\":\"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MFI.2017.8170447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI.2017.8170447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

为了了解水下环境,必须使用能够感知被探测地点的三维信息的传感方法。声纳传感器通常用于水下探测。提出了一种新的水下物体三维信息检索方法。该方案采用代表新一代声纳传感器的声学摄像机,提取并跟踪水下物体的线条,作为图像处理算法的视觉特征。在这项工作中,我们专注于人工水下环境,如水坝和桥梁。在这些结构化环境中,线段比点特征更受欢迎,因为它们可以更有效地表示结构信息。提出了一种线特征自动提取与对应匹配的方法。我们的方法可以使用基于扩展卡尔曼滤波器(EKF)的任意视点对水下物体进行3D测量。概率方法允许计算水下物体的三维重建,即使在摄像机运动的控制输入中存在不确定性。实验已在真实环境中进行。结果表明了该方法的有效性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D reconstruction of line features using multi-view acoustic images in underwater environment
In order to understand the underwater environment, it is essential to use sensing methodologies able to perceive the three dimensional (3D) information of the explored site. Sonar sensors are commonly employed in underwater exploration. This paper presents a novel methodology able to retrieve 3D information of underwater objects. The proposed solution employs an acoustic camera, which represents the next generation of sonar sensors, to extract and track the line of the underwater objects which are used as visual features for the image processing algorithm. In this work, we concentrate on artificial underwater environments, such as dams and bridges. In these structured environments, the line segments are preferred over the points feature, as they can represent structure information more effectively. We also developed a method for automatic extraction and correspondences matching of line features. Our approach enables 3D measurement of underwater objects using arbitrary viewpoints based on an extended Kalman filter (EKF). The probabilistic method allows computing the 3D reconstruction of underwater objects even in presence of uncertainty in the control input of the camera's movements. Experiments have been performed in real environments. Results showed the effectiveness and accuracy of the proposed solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信