利用信念函数改进高性能入侵检测系统

Alem Abdelkader, Y. Dahmani, A. Hadjali
{"title":"利用信念函数改进高性能入侵检测系统","authors":"Alem Abdelkader, Y. Dahmani, A. Hadjali","doi":"10.1109/SITIS.2016.50","DOIUrl":null,"url":null,"abstract":"Dempster-Shafer theory is a very powerful tool for data fusion, which provides a good estimation of imprecision, conflict from different sources and deal with any unions of hypotheses. In this paper, we propose to develop a high-performance hybrid Network Intrusion Detection System, based on belief functions. This system contains three levels, the first one includes two fast classifiers: Naïve Bayes and Support Vector Machine (SVM) Bused for their performance on classification. In the second level outputs of both SVM and Naïve Bayes are fuzzified using fuzzy logic. Third, the overall decision of the system is performed using Dempster's rule of combination. The experimentation on a recent benchmark dataset shows that our approach achieves a higher detection rate with low false alarm rates compared to some existing classifiers.","PeriodicalId":403704,"journal":{"name":"2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"On the Use of Belief Functions to Improve High Performance Intrusion Detection System\",\"authors\":\"Alem Abdelkader, Y. Dahmani, A. Hadjali\",\"doi\":\"10.1109/SITIS.2016.50\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dempster-Shafer theory is a very powerful tool for data fusion, which provides a good estimation of imprecision, conflict from different sources and deal with any unions of hypotheses. In this paper, we propose to develop a high-performance hybrid Network Intrusion Detection System, based on belief functions. This system contains three levels, the first one includes two fast classifiers: Naïve Bayes and Support Vector Machine (SVM) Bused for their performance on classification. In the second level outputs of both SVM and Naïve Bayes are fuzzified using fuzzy logic. Third, the overall decision of the system is performed using Dempster's rule of combination. The experimentation on a recent benchmark dataset shows that our approach achieves a higher detection rate with low false alarm rates compared to some existing classifiers.\",\"PeriodicalId\":403704,\"journal\":{\"name\":\"2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SITIS.2016.50\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SITIS.2016.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

Dempster-Shafer理论是一个非常强大的数据融合工具,它提供了一个很好的估计不精确,来自不同来源的冲突和处理任何合并的假设。本文提出了一种基于信念函数的高性能混合网络入侵检测系统。该系统包含三个层次,第一个层次包括两个快速分类器:Naïve基于贝叶斯和支持向量机(SVM)的分类性能。在第二层,使用模糊逻辑对SVM和Naïve贝叶斯的输出进行模糊化。第三,采用Dempster组合规则对系统进行总体决策。在最近的一个基准数据集上的实验表明,与现有的一些分类器相比,我们的方法在低误报率的情况下实现了更高的检测率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Use of Belief Functions to Improve High Performance Intrusion Detection System
Dempster-Shafer theory is a very powerful tool for data fusion, which provides a good estimation of imprecision, conflict from different sources and deal with any unions of hypotheses. In this paper, we propose to develop a high-performance hybrid Network Intrusion Detection System, based on belief functions. This system contains three levels, the first one includes two fast classifiers: Naïve Bayes and Support Vector Machine (SVM) Bused for their performance on classification. In the second level outputs of both SVM and Naïve Bayes are fuzzified using fuzzy logic. Third, the overall decision of the system is performed using Dempster's rule of combination. The experimentation on a recent benchmark dataset shows that our approach achieves a higher detection rate with low false alarm rates compared to some existing classifiers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信