基于随机分布的弹药有效载荷数值估计

Gregory Battle
{"title":"基于随机分布的弹药有效载荷数值估计","authors":"Gregory Battle","doi":"10.1080/10157891.2004.10462265","DOIUrl":null,"url":null,"abstract":"Abstract This mathematical research involves formulating mathematical explanations and solving discrete probabilistic problems related to the numerical estimation of target hits. These estimation formulas enable the cost estimation of operating and support funding for weapons payloads. Two of the three analytical problems involve estimating the probability that a target is hit after a tactical munitions is dispensed from an aircraft or missile launcher and the submunitions are ejected to clear a targeted area. The first problem entails determining the probability of hitting a target if a munitions may fall within a circle of radius r with a landing spread resembling a Gaussian or bivariate normal distribution, i.e., a two-dimensional probability distribution given jointly by (X,Y) ∼N(0, [sgrave]2); the second problem generalizes the first and assumes that a mine's true position and a munitions’ targeting are subject to random errors whose distributions are circular Gaussian; this problem is solved using discrete convolution techniques in the spatial domain and multiple integrals for the dispersing distribution. A third Poisson model is offered under some standard assumptions for multiple target hits.","PeriodicalId":311790,"journal":{"name":"Journal of Parametrics","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Estimation of Munitions Payload using Random Distributions\",\"authors\":\"Gregory Battle\",\"doi\":\"10.1080/10157891.2004.10462265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This mathematical research involves formulating mathematical explanations and solving discrete probabilistic problems related to the numerical estimation of target hits. These estimation formulas enable the cost estimation of operating and support funding for weapons payloads. Two of the three analytical problems involve estimating the probability that a target is hit after a tactical munitions is dispensed from an aircraft or missile launcher and the submunitions are ejected to clear a targeted area. The first problem entails determining the probability of hitting a target if a munitions may fall within a circle of radius r with a landing spread resembling a Gaussian or bivariate normal distribution, i.e., a two-dimensional probability distribution given jointly by (X,Y) ∼N(0, [sgrave]2); the second problem generalizes the first and assumes that a mine's true position and a munitions’ targeting are subject to random errors whose distributions are circular Gaussian; this problem is solved using discrete convolution techniques in the spatial domain and multiple integrals for the dispersing distribution. A third Poisson model is offered under some standard assumptions for multiple target hits.\",\"PeriodicalId\":311790,\"journal\":{\"name\":\"Journal of Parametrics\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Parametrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10157891.2004.10462265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Parametrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10157891.2004.10462265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要该数学研究涉及制定数学解释和求解与目标命中数值估计相关的离散概率问题。这些估算公式能够对武器有效载荷的运行和保障资金进行成本估算。三个分析问题中的两个涉及估计从飞机或导弹发射器投放战术弹药和弹射弹药清除目标区域后击中目标的概率。第一个问题是,如果弹药落在半径为r的圆内,其降落分布类似于高斯或二元正态分布,即由(X,Y) ~ N(0, [sgrave]2)联合给出的二维概率分布,则需要确定击中目标的概率;第二个问题推广了第一个问题,并假设地雷的真实位置和弹药的瞄准受到随机误差的影响,其分布是圆形高斯分布;利用空间域的离散卷积技术和离散分布的多重积分技术解决了这一问题。在一些标准假设下,给出了多目标命中的第三种泊松模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Estimation of Munitions Payload using Random Distributions
Abstract This mathematical research involves formulating mathematical explanations and solving discrete probabilistic problems related to the numerical estimation of target hits. These estimation formulas enable the cost estimation of operating and support funding for weapons payloads. Two of the three analytical problems involve estimating the probability that a target is hit after a tactical munitions is dispensed from an aircraft or missile launcher and the submunitions are ejected to clear a targeted area. The first problem entails determining the probability of hitting a target if a munitions may fall within a circle of radius r with a landing spread resembling a Gaussian or bivariate normal distribution, i.e., a two-dimensional probability distribution given jointly by (X,Y) ∼N(0, [sgrave]2); the second problem generalizes the first and assumes that a mine's true position and a munitions’ targeting are subject to random errors whose distributions are circular Gaussian; this problem is solved using discrete convolution techniques in the spatial domain and multiple integrals for the dispersing distribution. A third Poisson model is offered under some standard assumptions for multiple target hits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信