基于实时车辆数据的神经模糊电子制动系统建模

Ana Farhat, Kyle Hagen, K. Cheok, Balaji Boominathan
{"title":"基于实时车辆数据的神经模糊电子制动系统建模","authors":"Ana Farhat, Kyle Hagen, K. Cheok, Balaji Boominathan","doi":"10.29007/Q7PR","DOIUrl":null,"url":null,"abstract":"Electronic Brake System (EBS) is considered as one of the most complicated systems whose performance depends on the subsystems parameters. Usually these parameters are difficult to predict. Based on the task to improve the EBS performance, this article presents a mathematical modeling approach based on neuro-fuzzy network method to model a subsystem of EBS. For the model parameters identification, a neuro-fuzzy network has been implemented based on Least Square Error (LSE) and LevenbergMarquardt Algorithm (LMA) as the optimization algorithms. Finally, the performance of identified model has been evaluated.","PeriodicalId":264035,"journal":{"name":"International Conference on Computers and Their Applications","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Neuro-fuzzy-based Electronic Brake System Modeling using Real Time Vehicle Data\",\"authors\":\"Ana Farhat, Kyle Hagen, K. Cheok, Balaji Boominathan\",\"doi\":\"10.29007/Q7PR\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electronic Brake System (EBS) is considered as one of the most complicated systems whose performance depends on the subsystems parameters. Usually these parameters are difficult to predict. Based on the task to improve the EBS performance, this article presents a mathematical modeling approach based on neuro-fuzzy network method to model a subsystem of EBS. For the model parameters identification, a neuro-fuzzy network has been implemented based on Least Square Error (LSE) and LevenbergMarquardt Algorithm (LMA) as the optimization algorithms. Finally, the performance of identified model has been evaluated.\",\"PeriodicalId\":264035,\"journal\":{\"name\":\"International Conference on Computers and Their Applications\",\"volume\":\"118 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Computers and Their Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29007/Q7PR\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computers and Their Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29007/Q7PR","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

电子制动系统(EBS)被认为是最复杂的系统之一,其性能取决于子系统的参数。通常这些参数很难预测。基于提高EBS系统性能的任务,提出了一种基于神经模糊网络的EBS子系统数学建模方法。在模型参数辨识方面,以最小二乘误差(LSE)和LevenbergMarquardt算法(LMA)为优化算法,实现了神经模糊网络。最后,对识别出的模型进行了性能评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neuro-fuzzy-based Electronic Brake System Modeling using Real Time Vehicle Data
Electronic Brake System (EBS) is considered as one of the most complicated systems whose performance depends on the subsystems parameters. Usually these parameters are difficult to predict. Based on the task to improve the EBS performance, this article presents a mathematical modeling approach based on neuro-fuzzy network method to model a subsystem of EBS. For the model parameters identification, a neuro-fuzzy network has been implemented based on Least Square Error (LSE) and LevenbergMarquardt Algorithm (LMA) as the optimization algorithms. Finally, the performance of identified model has been evaluated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信