{"title":"基于视觉的小无人机感知与规避实验评估","authors":"R. Opromolla, G. Fasano, D. Accardo","doi":"10.1109/DASC43569.2019.9081725","DOIUrl":null,"url":null,"abstract":"This paper presents first results of an experimental flight-test campaign aimed to gather data for performance assessment of non-cooperative Sense and Avoid architectures for small Unmanned Aircraft Systems (UAS). The attention is here focused on vision-based approaches. An innovative sensing technique is proposed which exploits a Deep Learning (DL) network as the main processing block of the detector algorithm, and a multi-temporal strategy for track generation and confirmation. Both the detection and tracking phases foresee ad-hoc solutions to deal with the presence of intruders either above or below the horizon. Two customized small quadcopters, equipped with high-resolution color cameras, are used to reproduce in flight low-altitude, near-collision scenarios characterized by different speed and height above ground, thus being able to act simultaneously as ownship and intruder. Results demonstrate the capability of the DL-based detector to provide maximum declaration range around 300 m and 100 m, above and below the horizon, respectively. The tracker can robustly produce firm track of the intruder while rejecting many false positives, particularly occurring in below-the-horizon scenarios.","PeriodicalId":129864,"journal":{"name":"2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Experimental assessment of vision-based sensing for small UAS sense and avoid\",\"authors\":\"R. Opromolla, G. Fasano, D. Accardo\",\"doi\":\"10.1109/DASC43569.2019.9081725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents first results of an experimental flight-test campaign aimed to gather data for performance assessment of non-cooperative Sense and Avoid architectures for small Unmanned Aircraft Systems (UAS). The attention is here focused on vision-based approaches. An innovative sensing technique is proposed which exploits a Deep Learning (DL) network as the main processing block of the detector algorithm, and a multi-temporal strategy for track generation and confirmation. Both the detection and tracking phases foresee ad-hoc solutions to deal with the presence of intruders either above or below the horizon. Two customized small quadcopters, equipped with high-resolution color cameras, are used to reproduce in flight low-altitude, near-collision scenarios characterized by different speed and height above ground, thus being able to act simultaneously as ownship and intruder. Results demonstrate the capability of the DL-based detector to provide maximum declaration range around 300 m and 100 m, above and below the horizon, respectively. The tracker can robustly produce firm track of the intruder while rejecting many false positives, particularly occurring in below-the-horizon scenarios.\",\"PeriodicalId\":129864,\"journal\":{\"name\":\"2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DASC43569.2019.9081725\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASC43569.2019.9081725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experimental assessment of vision-based sensing for small UAS sense and avoid
This paper presents first results of an experimental flight-test campaign aimed to gather data for performance assessment of non-cooperative Sense and Avoid architectures for small Unmanned Aircraft Systems (UAS). The attention is here focused on vision-based approaches. An innovative sensing technique is proposed which exploits a Deep Learning (DL) network as the main processing block of the detector algorithm, and a multi-temporal strategy for track generation and confirmation. Both the detection and tracking phases foresee ad-hoc solutions to deal with the presence of intruders either above or below the horizon. Two customized small quadcopters, equipped with high-resolution color cameras, are used to reproduce in flight low-altitude, near-collision scenarios characterized by different speed and height above ground, thus being able to act simultaneously as ownship and intruder. Results demonstrate the capability of the DL-based detector to provide maximum declaration range around 300 m and 100 m, above and below the horizon, respectively. The tracker can robustly produce firm track of the intruder while rejecting many false positives, particularly occurring in below-the-horizon scenarios.