基于Web服务推荐的多维QoS数据预测QoS值

You Ma, Shangguang Wang, Fangchun Yang, Rong N. Chang
{"title":"基于Web服务推荐的多维QoS数据预测QoS值","authors":"You Ma, Shangguang Wang, Fangchun Yang, Rong N. Chang","doi":"10.1109/ICWS.2015.42","DOIUrl":null,"url":null,"abstract":"Fast deployment of mobile Internet makes Web services often consumed under a multi-dimensional spatiotemporal model, wherein a specific service client could keep active while its location is changing. Recommending Web services for such clients must be able to predict unknown QoS values with the target client's service requesting time and location taken into account, e.g., Performing the prediction via a set of measured multi-dimensional QoS data. Most QoS prediction methods focus on the QoS characteristics for one specific dimension, e.g., Time or location, and do not exploit the structural relationships among the multi-dimensional QoS data. This paper proposes an integrated QoS prediction approach which unifies the modeling of multi-dimensional QoS data via multi-linear-algebra based concepts of tensor and enables efficient service recommendation for Web service based mobile clients via tensor decomposition and reconstruction optimization algorithms. Comparative experimental evaluation results show that the proposed QoS prediction approach could result in much better accuracy in recommending Web services than several other representative ones.","PeriodicalId":250871,"journal":{"name":"2015 IEEE International Conference on Web Services","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Predicting QoS Values via Multi-dimensional QoS Data for Web Service Recommendations\",\"authors\":\"You Ma, Shangguang Wang, Fangchun Yang, Rong N. Chang\",\"doi\":\"10.1109/ICWS.2015.42\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fast deployment of mobile Internet makes Web services often consumed under a multi-dimensional spatiotemporal model, wherein a specific service client could keep active while its location is changing. Recommending Web services for such clients must be able to predict unknown QoS values with the target client's service requesting time and location taken into account, e.g., Performing the prediction via a set of measured multi-dimensional QoS data. Most QoS prediction methods focus on the QoS characteristics for one specific dimension, e.g., Time or location, and do not exploit the structural relationships among the multi-dimensional QoS data. This paper proposes an integrated QoS prediction approach which unifies the modeling of multi-dimensional QoS data via multi-linear-algebra based concepts of tensor and enables efficient service recommendation for Web service based mobile clients via tensor decomposition and reconstruction optimization algorithms. Comparative experimental evaluation results show that the proposed QoS prediction approach could result in much better accuracy in recommending Web services than several other representative ones.\",\"PeriodicalId\":250871,\"journal\":{\"name\":\"2015 IEEE International Conference on Web Services\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Web Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWS.2015.42\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Web Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWS.2015.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

移动互联网的快速部署使得Web服务经常在多维时空模型下消费,其中特定的服务客户端可以在其位置变化时保持活动。为这样的客户机推荐Web服务必须能够在考虑目标客户机的服务请求时间和位置的情况下预测未知的QoS值,例如,通过一组测量的多维QoS数据执行预测。大多数QoS预测方法侧重于某个特定维度(如时间或位置)的QoS特征,而没有利用多维QoS数据之间的结构关系。本文提出了一种集成的QoS预测方法,该方法通过基于多线性代数的张量概念统一了多维QoS数据的建模,并通过张量分解和重构优化算法对基于Web服务的移动客户端进行高效的服务推荐。对比实验评价结果表明,所提出的QoS预测方法在推荐Web服务方面的准确率要比其他几种具有代表性的预测方法高得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting QoS Values via Multi-dimensional QoS Data for Web Service Recommendations
Fast deployment of mobile Internet makes Web services often consumed under a multi-dimensional spatiotemporal model, wherein a specific service client could keep active while its location is changing. Recommending Web services for such clients must be able to predict unknown QoS values with the target client's service requesting time and location taken into account, e.g., Performing the prediction via a set of measured multi-dimensional QoS data. Most QoS prediction methods focus on the QoS characteristics for one specific dimension, e.g., Time or location, and do not exploit the structural relationships among the multi-dimensional QoS data. This paper proposes an integrated QoS prediction approach which unifies the modeling of multi-dimensional QoS data via multi-linear-algebra based concepts of tensor and enables efficient service recommendation for Web service based mobile clients via tensor decomposition and reconstruction optimization algorithms. Comparative experimental evaluation results show that the proposed QoS prediction approach could result in much better accuracy in recommending Web services than several other representative ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信