深度学习模型在MicroRNA转录起始位点鉴定中的应用

Clayton Barham, Mingyu Cha, X. Li, Haiyan Hu
{"title":"深度学习模型在MicroRNA转录起始位点鉴定中的应用","authors":"Clayton Barham, Mingyu Cha, X. Li, Haiyan Hu","doi":"10.1109/ICBCB.2019.8854645","DOIUrl":null,"url":null,"abstract":"MicroRNAs (miRNA) are ~22 base pair long RNAs that play important roles in regulating gene expression. Understanding the transcriptional regulation of miRNA is critical to gene regulation. However, it is often difficult to precisely identify miRNA transcription start sites (TSSs) due to miRNA-specific biogenesis. Existing computational methods cannot effectively predict miRNA TSSs. Here, we employed deep learning architectures incorporating Long Short-Term Memory (LSTM) and Convolutional Neural Network (CNN) techniques to detect miRNA TSSs in regions of accessible chromatin. By testing on benchmark experimental data, we demonstrated that deep learning models outperform support vector machine and can accurately distinguish miRNA TSSs from both flanking regions and intergenic regions.","PeriodicalId":136995,"journal":{"name":"2019 IEEE 7th International Conference on Bioinformatics and Computational Biology ( ICBCB)","volume":"20 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Application of Deep Learning Models to MicroRNA Transcription Start Site Identification\",\"authors\":\"Clayton Barham, Mingyu Cha, X. Li, Haiyan Hu\",\"doi\":\"10.1109/ICBCB.2019.8854645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MicroRNAs (miRNA) are ~22 base pair long RNAs that play important roles in regulating gene expression. Understanding the transcriptional regulation of miRNA is critical to gene regulation. However, it is often difficult to precisely identify miRNA transcription start sites (TSSs) due to miRNA-specific biogenesis. Existing computational methods cannot effectively predict miRNA TSSs. Here, we employed deep learning architectures incorporating Long Short-Term Memory (LSTM) and Convolutional Neural Network (CNN) techniques to detect miRNA TSSs in regions of accessible chromatin. By testing on benchmark experimental data, we demonstrated that deep learning models outperform support vector machine and can accurately distinguish miRNA TSSs from both flanking regions and intergenic regions.\",\"PeriodicalId\":136995,\"journal\":{\"name\":\"2019 IEEE 7th International Conference on Bioinformatics and Computational Biology ( ICBCB)\",\"volume\":\"20 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 7th International Conference on Bioinformatics and Computational Biology ( ICBCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBCB.2019.8854645\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 7th International Conference on Bioinformatics and Computational Biology ( ICBCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBCB.2019.8854645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

MicroRNAs (miRNA)是一种长约22个碱基对的rna,在基因表达调控中起重要作用。了解miRNA的转录调控对基因调控至关重要。然而,由于miRNA特异性的生物发生,通常难以精确鉴定miRNA转录起始位点(tss)。现有的计算方法不能有效预测miRNA tss。在这里,我们采用了结合长短期记忆(LSTM)和卷积神经网络(CNN)技术的深度学习架构来检测可访问染色质区域的miRNA tss。通过对基准实验数据的测试,我们证明了深度学习模型优于支持向量机,可以准确区分miRNA tss的侧翼区域和基因间区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Deep Learning Models to MicroRNA Transcription Start Site Identification
MicroRNAs (miRNA) are ~22 base pair long RNAs that play important roles in regulating gene expression. Understanding the transcriptional regulation of miRNA is critical to gene regulation. However, it is often difficult to precisely identify miRNA transcription start sites (TSSs) due to miRNA-specific biogenesis. Existing computational methods cannot effectively predict miRNA TSSs. Here, we employed deep learning architectures incorporating Long Short-Term Memory (LSTM) and Convolutional Neural Network (CNN) techniques to detect miRNA TSSs in regions of accessible chromatin. By testing on benchmark experimental data, we demonstrated that deep learning models outperform support vector machine and can accurately distinguish miRNA TSSs from both flanking regions and intergenic regions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信