T. Avetissian, F. Formosa, Michel Demuynck, Aidin Delnavaz, J. Voix, A. Badel
{"title":"用于入耳式能量收集系统的液压阀设计","authors":"T. Avetissian, F. Formosa, Michel Demuynck, Aidin Delnavaz, J. Voix, A. Badel","doi":"10.1109/PowerMEMS54003.2021.9658383","DOIUrl":null,"url":null,"abstract":"This paper demonstrates the concept and design of a hydraulic-piezoelectric self-actuated frequency up conversion system for energy harvesting. Two pistons actuate a bistable oscillator associated to a piezoelectric transducer allowing a low frequency hydraulic excitation to be efficiently converted into electric energy. An innovative concept of hydraulic passive valves based on flexible tube buckling is presented.","PeriodicalId":165158,"journal":{"name":"2021 IEEE 20th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydraulic valves design for the operation of an in-ear energy harvesting system\",\"authors\":\"T. Avetissian, F. Formosa, Michel Demuynck, Aidin Delnavaz, J. Voix, A. Badel\",\"doi\":\"10.1109/PowerMEMS54003.2021.9658383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper demonstrates the concept and design of a hydraulic-piezoelectric self-actuated frequency up conversion system for energy harvesting. Two pistons actuate a bistable oscillator associated to a piezoelectric transducer allowing a low frequency hydraulic excitation to be efficiently converted into electric energy. An innovative concept of hydraulic passive valves based on flexible tube buckling is presented.\",\"PeriodicalId\":165158,\"journal\":{\"name\":\"2021 IEEE 20th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 20th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PowerMEMS54003.2021.9658383\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 20th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PowerMEMS54003.2021.9658383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hydraulic valves design for the operation of an in-ear energy harvesting system
This paper demonstrates the concept and design of a hydraulic-piezoelectric self-actuated frequency up conversion system for energy harvesting. Two pistons actuate a bistable oscillator associated to a piezoelectric transducer allowing a low frequency hydraulic excitation to be efficiently converted into electric energy. An innovative concept of hydraulic passive valves based on flexible tube buckling is presented.