基于非下采样Shearlet变换的多焦点图像融合

Yuan Cao, Shutao Li, Jianwen Hu
{"title":"基于非下采样Shearlet变换的多焦点图像融合","authors":"Yuan Cao, Shutao Li, Jianwen Hu","doi":"10.1109/ICIG.2011.37","DOIUrl":null,"url":null,"abstract":"In this paper we introduce the nonsubsampled shear let transform for multi-focus image fusion. In the proposed method, source images are decomposed by nonsubsampled shear let transform firstly. Then the decomposition coefficients are merged according to the given fusion rule. Finally the fused image is reconstructed by inverse nonsubsampled shear let transform. The experimental results over five pairs of registered multi-focus images and one pair of mis-registered multi-focus images demonstrate the superiority of the proposed method.","PeriodicalId":277974,"journal":{"name":"2011 Sixth International Conference on Image and Graphics","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"Multi-focus Image Fusion by Nonsubsampled Shearlet Transform\",\"authors\":\"Yuan Cao, Shutao Li, Jianwen Hu\",\"doi\":\"10.1109/ICIG.2011.37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce the nonsubsampled shear let transform for multi-focus image fusion. In the proposed method, source images are decomposed by nonsubsampled shear let transform firstly. Then the decomposition coefficients are merged according to the given fusion rule. Finally the fused image is reconstructed by inverse nonsubsampled shear let transform. The experimental results over five pairs of registered multi-focus images and one pair of mis-registered multi-focus images demonstrate the superiority of the proposed method.\",\"PeriodicalId\":277974,\"journal\":{\"name\":\"2011 Sixth International Conference on Image and Graphics\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Sixth International Conference on Image and Graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIG.2011.37\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Sixth International Conference on Image and Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIG.2011.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

摘要

本文介绍了用于多焦点图像融合的非下采样剪切let变换。该方法首先对源图像进行非下采样剪切let变换分解。然后根据给定的融合规则对分解系数进行融合。最后,通过非下采样逆剪切let变换重建融合后的图像。在5对配准多聚焦图像和1对错配多聚焦图像上的实验结果表明了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-focus Image Fusion by Nonsubsampled Shearlet Transform
In this paper we introduce the nonsubsampled shear let transform for multi-focus image fusion. In the proposed method, source images are decomposed by nonsubsampled shear let transform firstly. Then the decomposition coefficients are merged according to the given fusion rule. Finally the fused image is reconstructed by inverse nonsubsampled shear let transform. The experimental results over five pairs of registered multi-focus images and one pair of mis-registered multi-focus images demonstrate the superiority of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信