基于差分进化算法的图像分割

Zhenkui Pei, Yanli Zhao, Zhen Liu
{"title":"基于差分进化算法的图像分割","authors":"Zhenkui Pei, Yanli Zhao, Zhen Liu","doi":"10.1109/IASP.2009.5054643","DOIUrl":null,"url":null,"abstract":"Threshold segmentation is a critical technology of image segmentation. When the image is low signal-to-noise, the maximum between-cluster variance method (OTSU) cannot provide the ideal result. The 2D maximum between-cluster variance method can perform well with sharply increased computation. This work proposes a new image segmentation method based on OTSU and Differential Evolution. This solution performs a pre-processing step before the image segmentation. It is shown that Differential Evolution presents good segmentation result in noisy images. Moreover, the use of this method is easier and faster compared to the 2D maximum between-cluster variance method.","PeriodicalId":143959,"journal":{"name":"2009 International Conference on Image Analysis and Signal Processing","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Image segmentation based on Differential Evolution algorithm\",\"authors\":\"Zhenkui Pei, Yanli Zhao, Zhen Liu\",\"doi\":\"10.1109/IASP.2009.5054643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Threshold segmentation is a critical technology of image segmentation. When the image is low signal-to-noise, the maximum between-cluster variance method (OTSU) cannot provide the ideal result. The 2D maximum between-cluster variance method can perform well with sharply increased computation. This work proposes a new image segmentation method based on OTSU and Differential Evolution. This solution performs a pre-processing step before the image segmentation. It is shown that Differential Evolution presents good segmentation result in noisy images. Moreover, the use of this method is easier and faster compared to the 2D maximum between-cluster variance method.\",\"PeriodicalId\":143959,\"journal\":{\"name\":\"2009 International Conference on Image Analysis and Signal Processing\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Image Analysis and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IASP.2009.5054643\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Image Analysis and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IASP.2009.5054643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

阈值分割是图像分割的一项关键技术。当图像是低信噪比时,最大簇间方差法(OTSU)不能提供理想的结果。二维最大簇间方差法在计算量大幅增加的情况下具有较好的性能。本文提出了一种基于OTSU和差分进化的图像分割方法。该方案在图像分割前执行预处理步骤。结果表明,差分进化算法在噪声图像中具有良好的分割效果。而且,与2D最大簇间方差法相比,该方法的使用更简单、更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image segmentation based on Differential Evolution algorithm
Threshold segmentation is a critical technology of image segmentation. When the image is low signal-to-noise, the maximum between-cluster variance method (OTSU) cannot provide the ideal result. The 2D maximum between-cluster variance method can perform well with sharply increased computation. This work proposes a new image segmentation method based on OTSU and Differential Evolution. This solution performs a pre-processing step before the image segmentation. It is shown that Differential Evolution presents good segmentation result in noisy images. Moreover, the use of this method is easier and faster compared to the 2D maximum between-cluster variance method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信