基于Gram-Schmidt正交化的压缩感知测量矩阵

Xiaofen Lin, G. Lu, Jingwen Yan, Wei Lin
{"title":"基于Gram-Schmidt正交化的压缩感知测量矩阵","authors":"Xiaofen Lin, G. Lu, Jingwen Yan, Wei Lin","doi":"10.1109/ICIG.2011.131","DOIUrl":null,"url":null,"abstract":"Measurement matrix plays an important part in sampling data and reconstructing signal in Compressive Sensing (CS). In this paper, the common measurement matrices and the relationship between measurement number of measurement matrix and signal sparsity are researched. The performance among the common measurement matrices is compared. In order to obtain a better reconstruction result, an improved method based on Gram-Schmidt orthogonalization of row vectors for matrix is proposed. The experiments show that the improved measurement matrix is better than the original measurement matrix when used to reconstruct signal.","PeriodicalId":277974,"journal":{"name":"2011 Sixth International Conference on Image and Graphics","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Measurement Matrix of Compressive Sensing Based on Gram-Schmidt Orthogonalization\",\"authors\":\"Xiaofen Lin, G. Lu, Jingwen Yan, Wei Lin\",\"doi\":\"10.1109/ICIG.2011.131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Measurement matrix plays an important part in sampling data and reconstructing signal in Compressive Sensing (CS). In this paper, the common measurement matrices and the relationship between measurement number of measurement matrix and signal sparsity are researched. The performance among the common measurement matrices is compared. In order to obtain a better reconstruction result, an improved method based on Gram-Schmidt orthogonalization of row vectors for matrix is proposed. The experiments show that the improved measurement matrix is better than the original measurement matrix when used to reconstruct signal.\",\"PeriodicalId\":277974,\"journal\":{\"name\":\"2011 Sixth International Conference on Image and Graphics\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Sixth International Conference on Image and Graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIG.2011.131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Sixth International Conference on Image and Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIG.2011.131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在压缩感知(CS)中,测量矩阵在数据采样和信号重构中起着重要作用。本文研究了常用的测量矩阵以及测量矩阵的测量个数与信号稀疏度的关系。比较了常用测量矩阵的性能。为了获得更好的重构效果,提出了一种基于矩阵行向量Gram-Schmidt正交化的改进方法。实验表明,改进后的测量矩阵在重构信号时优于原始测量矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measurement Matrix of Compressive Sensing Based on Gram-Schmidt Orthogonalization
Measurement matrix plays an important part in sampling data and reconstructing signal in Compressive Sensing (CS). In this paper, the common measurement matrices and the relationship between measurement number of measurement matrix and signal sparsity are researched. The performance among the common measurement matrices is compared. In order to obtain a better reconstruction result, an improved method based on Gram-Schmidt orthogonalization of row vectors for matrix is proposed. The experiments show that the improved measurement matrix is better than the original measurement matrix when used to reconstruct signal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信