利用GPGPU非均匀共享数据缓存的软件级调度

Bo Wu, Weilin Wang, Xipeng Shen
{"title":"利用GPGPU非均匀共享数据缓存的软件级调度","authors":"Bo Wu, Weilin Wang, Xipeng Shen","doi":"10.1145/2492408.2492421","DOIUrl":null,"url":null,"abstract":"Data cache is introduced to GPUs to mitigate the irregular memory access problem. But few studies have investigated how to exploit its full potential. In this work, we consider some important GPU applications that feature data sharing across thread blocks. We show that the sharing is not well exploited because current GPU runtime ignores such a factor when scheduling threads. We then present an application-level transformation to remap thread blocks to data on the fly. With the software-level scheduler, thread blocks with much data sharing are scheduled to share the cache on a streaming multiprocessor (SM). Experiments on four benchmarks show 1.23X speedup on average.","PeriodicalId":130040,"journal":{"name":"Workshop on Memory System Performance and Correctness","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Software-level scheduling to exploit non-uniformly shared data cache on GPGPU\",\"authors\":\"Bo Wu, Weilin Wang, Xipeng Shen\",\"doi\":\"10.1145/2492408.2492421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data cache is introduced to GPUs to mitigate the irregular memory access problem. But few studies have investigated how to exploit its full potential. In this work, we consider some important GPU applications that feature data sharing across thread blocks. We show that the sharing is not well exploited because current GPU runtime ignores such a factor when scheduling threads. We then present an application-level transformation to remap thread blocks to data on the fly. With the software-level scheduler, thread blocks with much data sharing are scheduled to share the cache on a streaming multiprocessor (SM). Experiments on four benchmarks show 1.23X speedup on average.\",\"PeriodicalId\":130040,\"journal\":{\"name\":\"Workshop on Memory System Performance and Correctness\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Memory System Performance and Correctness\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2492408.2492421\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Memory System Performance and Correctness","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2492408.2492421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在gpu中引入数据缓存来缓解内存访问不规律的问题。但很少有研究调查如何充分利用其潜力。在这项工作中,我们考虑了一些重要的GPU应用程序,这些应用程序具有跨线程块的数据共享功能。我们表明,共享没有得到很好的利用,因为当前的GPU运行时在调度线程时忽略了这样一个因素。然后,我们提供一个应用程序级别的转换,以便动态地将线程块重新映射到数据。使用软件级调度器,可以调度具有大量数据共享的线程块来共享流多处理器(SM)上的缓存。在四个基准测试上的实验显示,平均速度提高了1.23倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Software-level scheduling to exploit non-uniformly shared data cache on GPGPU
Data cache is introduced to GPUs to mitigate the irregular memory access problem. But few studies have investigated how to exploit its full potential. In this work, we consider some important GPU applications that feature data sharing across thread blocks. We show that the sharing is not well exploited because current GPU runtime ignores such a factor when scheduling threads. We then present an application-level transformation to remap thread blocks to data on the fly. With the software-level scheduler, thread blocks with much data sharing are scheduled to share the cache on a streaming multiprocessor (SM). Experiments on four benchmarks show 1.23X speedup on average.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信