Reject-Inference

Raymond A. Anderson
{"title":"Reject-Inference","authors":"Raymond A. Anderson","doi":"10.1093/oso/9780192844194.003.0023","DOIUrl":null,"url":null,"abstract":"Rejects had not the opportunity to perform. Marginal Rejects are often cherry-picked based upon other data, or cheapened through down-sells, which distorts an Accepts-only model. Reject inference addresses resultant distortions but is contentious. (1) The basics—i) pointers—basic considerations; ii) missing at random, or not; iii) terminology—data manipulation, allocation, methodology; iv) characteristic analysis—for reject inference; v) swap-set analysis—proposed versus past; v) population flow diagram. (2) Intermediate models—especially ‘known Good/Bad’, which may use bureaux’s performance data. Others are Accept/Reject and Cashed/Uncashed. Possible formulae are provided for extrapolated performance assignments. (3) Inference smorgasbord—i) supplementation; ii) performance surrogates; iii) reject is Bad; iv) augmentation; v) weight of evidence (WoE) adjustments; vi) iterative reclassification; vii) extrapolation of accept performance. (4) Favoured technique—involving i) fuzzy-parcelling—record cloning and weight adjustments; ii) extrapolation—graphical setting of performance-adjustment parameters; iii) attribute-level adjustments—where needed; v) practicalities—variable names and coding, with an example.","PeriodicalId":286194,"journal":{"name":"Credit Intelligence & Modelling","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Reject-Inference\",\"authors\":\"Raymond A. Anderson\",\"doi\":\"10.1093/oso/9780192844194.003.0023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rejects had not the opportunity to perform. Marginal Rejects are often cherry-picked based upon other data, or cheapened through down-sells, which distorts an Accepts-only model. Reject inference addresses resultant distortions but is contentious. (1) The basics—i) pointers—basic considerations; ii) missing at random, or not; iii) terminology—data manipulation, allocation, methodology; iv) characteristic analysis—for reject inference; v) swap-set analysis—proposed versus past; v) population flow diagram. (2) Intermediate models—especially ‘known Good/Bad’, which may use bureaux’s performance data. Others are Accept/Reject and Cashed/Uncashed. Possible formulae are provided for extrapolated performance assignments. (3) Inference smorgasbord—i) supplementation; ii) performance surrogates; iii) reject is Bad; iv) augmentation; v) weight of evidence (WoE) adjustments; vi) iterative reclassification; vii) extrapolation of accept performance. (4) Favoured technique—involving i) fuzzy-parcelling—record cloning and weight adjustments; ii) extrapolation—graphical setting of performance-adjustment parameters; iii) attribute-level adjustments—where needed; v) practicalities—variable names and coding, with an example.\",\"PeriodicalId\":286194,\"journal\":{\"name\":\"Credit Intelligence & Modelling\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Credit Intelligence & Modelling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780192844194.003.0023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Credit Intelligence & Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780192844194.003.0023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

被拒绝的人没有机会表演。边际拒绝通常是根据其他数据精心挑选的,或者通过降价销售来降低价格,这扭曲了只接受的模型。拒绝推理解决了由此产生的扭曲,但存在争议。(1)基础——i)指针——基本考虑;Ii)随机缺失,或不缺失;Iii)术语-数据操作、分配、方法;Iv)特征分析——用于拒绝推理;V)交换集分析-建议与过去;(五)人口流量表。(2)中间模型——特别是“已知的好/坏”模型,它可能使用各部门的绩效数据。其他是接受/拒绝和兑现/未兑现。为外推性能分配提供了可能的公式。(3)推论自助餐- i)补充;Ii)业绩代理人;iii)拒收不良;(四)增加;v)证据权重(WoE)调整;Vi)迭代重分类;接受绩效的外推。(4)优选技术,包括模糊包装、记录克隆和权重调整;Ii)性能调整参数的外推图解设置;Iii)属性级调整——必要时;V)实用性——变量名和编码,附示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reject-Inference
Rejects had not the opportunity to perform. Marginal Rejects are often cherry-picked based upon other data, or cheapened through down-sells, which distorts an Accepts-only model. Reject inference addresses resultant distortions but is contentious. (1) The basics—i) pointers—basic considerations; ii) missing at random, or not; iii) terminology—data manipulation, allocation, methodology; iv) characteristic analysis—for reject inference; v) swap-set analysis—proposed versus past; v) population flow diagram. (2) Intermediate models—especially ‘known Good/Bad’, which may use bureaux’s performance data. Others are Accept/Reject and Cashed/Uncashed. Possible formulae are provided for extrapolated performance assignments. (3) Inference smorgasbord—i) supplementation; ii) performance surrogates; iii) reject is Bad; iv) augmentation; v) weight of evidence (WoE) adjustments; vi) iterative reclassification; vii) extrapolation of accept performance. (4) Favoured technique—involving i) fuzzy-parcelling—record cloning and weight adjustments; ii) extrapolation—graphical setting of performance-adjustment parameters; iii) attribute-level adjustments—where needed; v) practicalities—variable names and coding, with an example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信