动态数据系统中基于重构相空间和支持向量机的时间模式检测

Wenjing Zhang, X. Feng, N. Bansal
{"title":"动态数据系统中基于重构相空间和支持向量机的时间模式检测","authors":"Wenjing Zhang, X. Feng, N. Bansal","doi":"10.1109/ICINFA.2011.5948989","DOIUrl":null,"url":null,"abstract":"In this paper we present a method for detecting dynamic temporal patterns that are characteristic and predictive of significant events in a dynamic data system. We employ the Gaussian Mixture Model (GMM) to cluster the data sequence into three categories of signals, e.g. normal, patterns and events. The data sequence is then embedded into a Reconstructed Phase Space (RPS) which is topologically equivalent to the dynamics of the original system. We apply a hybrid method using Support Vector Machines (SVM) and Maximum a Posterior (MAP) to classify temporal pattern signals based on the event function. We performed two experimental applications using chaotic time series and Sludge Volume Index (SVI) series related to the Sludge Bulking problem. The proposed hybrid GMM-SVM phase space approach effectively detects temporal patterns and achieves higher predictive accuracy compared with the original RPS framework.","PeriodicalId":299418,"journal":{"name":"2011 IEEE International Conference on Information and Automation","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Detecting temporal patterns using Reconstructed Phase Space and Support Vector Machine in the dynamic data system\",\"authors\":\"Wenjing Zhang, X. Feng, N. Bansal\",\"doi\":\"10.1109/ICINFA.2011.5948989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a method for detecting dynamic temporal patterns that are characteristic and predictive of significant events in a dynamic data system. We employ the Gaussian Mixture Model (GMM) to cluster the data sequence into three categories of signals, e.g. normal, patterns and events. The data sequence is then embedded into a Reconstructed Phase Space (RPS) which is topologically equivalent to the dynamics of the original system. We apply a hybrid method using Support Vector Machines (SVM) and Maximum a Posterior (MAP) to classify temporal pattern signals based on the event function. We performed two experimental applications using chaotic time series and Sludge Volume Index (SVI) series related to the Sludge Bulking problem. The proposed hybrid GMM-SVM phase space approach effectively detects temporal patterns and achieves higher predictive accuracy compared with the original RPS framework.\",\"PeriodicalId\":299418,\"journal\":{\"name\":\"2011 IEEE International Conference on Information and Automation\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Information and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICINFA.2011.5948989\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Information and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICINFA.2011.5948989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们提出了一种检测动态时间模式的方法,这些模式是动态数据系统中重要事件的特征和预测。我们使用高斯混合模型(GMM)将数据序列聚类为三类信号,即正常,模式和事件。然后将数据序列嵌入到重构相空间(RPS)中,重构相空间在拓扑上等同于原始系统的动力学。基于事件函数,采用支持向量机(SVM)和最大后验(MAP)的混合方法对时间模式信号进行分类。我们使用与污泥膨胀问题相关的混沌时间序列和污泥体积指数(SVI)序列进行了两个实验应用。与原始的RPS框架相比,本文提出的混合GMM-SVM相空间方法能够有效地检测时间模式,并具有更高的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting temporal patterns using Reconstructed Phase Space and Support Vector Machine in the dynamic data system
In this paper we present a method for detecting dynamic temporal patterns that are characteristic and predictive of significant events in a dynamic data system. We employ the Gaussian Mixture Model (GMM) to cluster the data sequence into three categories of signals, e.g. normal, patterns and events. The data sequence is then embedded into a Reconstructed Phase Space (RPS) which is topologically equivalent to the dynamics of the original system. We apply a hybrid method using Support Vector Machines (SVM) and Maximum a Posterior (MAP) to classify temporal pattern signals based on the event function. We performed two experimental applications using chaotic time series and Sludge Volume Index (SVI) series related to the Sludge Bulking problem. The proposed hybrid GMM-SVM phase space approach effectively detects temporal patterns and achieves higher predictive accuracy compared with the original RPS framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信