偏微分方程的区域分解与不完全因子分解方法

C. Christara
{"title":"偏微分方程的区域分解与不完全因子分解方法","authors":"C. Christara","doi":"10.1109/DMCC.1991.633166","DOIUrl":null,"url":null,"abstract":"In this paper we develop and study a method which tries to combine the merits of Domain Decompoxition (DD) and Incomplete Cholesky preconditioned Con,iugate Gradient method (ICCG) for the parallel solution of linear elliptic Partial Differential Equations (PDEs) on rectangular domains. We frst discretise the PDE problem, using Spline Collocation, a method of Finite Element type based on smooth splines. This gives rise to a sparse linear system of equations. The ICCG method provides us with a very effient, but not straightfarward parallelisable linear solver for such systems. On the (other hand, DD methods are very effective for elliptic PD.Es. A combination of DD and ICCG methods, in which the subdomain solves are carried out with ICCG, leads to eflcient and highly parallelisable solvers. We implement this hybrid DD-ICCG method on a hypercube, discuss its parallel eflciency, and show results from expieriments on configurations with up to 32 processors. We apply a totally local communication scheme and discuss its performance on the iPSCI2 hypercube. A similsrr approach can be used with other PDE discretisation methods.","PeriodicalId":313314,"journal":{"name":"The Sixth Distributed Memory Computing Conference, 1991. Proceedings","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Domain Decomposition and Incomplete Factorisation Methods for Partial Differential Equations\",\"authors\":\"C. Christara\",\"doi\":\"10.1109/DMCC.1991.633166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we develop and study a method which tries to combine the merits of Domain Decompoxition (DD) and Incomplete Cholesky preconditioned Con,iugate Gradient method (ICCG) for the parallel solution of linear elliptic Partial Differential Equations (PDEs) on rectangular domains. We frst discretise the PDE problem, using Spline Collocation, a method of Finite Element type based on smooth splines. This gives rise to a sparse linear system of equations. The ICCG method provides us with a very effient, but not straightfarward parallelisable linear solver for such systems. On the (other hand, DD methods are very effective for elliptic PD.Es. A combination of DD and ICCG methods, in which the subdomain solves are carried out with ICCG, leads to eflcient and highly parallelisable solvers. We implement this hybrid DD-ICCG method on a hypercube, discuss its parallel eflciency, and show results from expieriments on configurations with up to 32 processors. We apply a totally local communication scheme and discuss its performance on the iPSCI2 hypercube. A similsrr approach can be used with other PDE discretisation methods.\",\"PeriodicalId\":313314,\"journal\":{\"name\":\"The Sixth Distributed Memory Computing Conference, 1991. Proceedings\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Sixth Distributed Memory Computing Conference, 1991. Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DMCC.1991.633166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Sixth Distributed Memory Computing Conference, 1991. Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DMCC.1991.633166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出并研究了一种结合区域分解(DD)和不完全Cholesky预条件共轭梯度法(ICCG)优点的求解矩形区域上线性椭圆型偏微分方程并行解的方法。我们首先使用基于光滑样条的有限元类型样条配置方法对PDE问题进行离散化。这就产生了一个稀疏线性方程组。ICCG方法为我们提供了一个非常有效的,但不是直接并行的线性求解器。另一方面,DD方法对于椭圆型偏微分方程是非常有效的。将DD和ICCG方法相结合,利用ICCG进行子域求解,得到了高效且高度并行的求解器。我们在一个超立方体上实现了这种混合DD-ICCG方法,讨论了它的并行效率,并给出了在多达32个处理器配置下的实验结果。本文提出了一种全局部通信方案,并讨论了该方案在iPSCI2超立方体上的性能。类似的方法也可用于其它偏微分方程离散化方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Domain Decomposition and Incomplete Factorisation Methods for Partial Differential Equations
In this paper we develop and study a method which tries to combine the merits of Domain Decompoxition (DD) and Incomplete Cholesky preconditioned Con,iugate Gradient method (ICCG) for the parallel solution of linear elliptic Partial Differential Equations (PDEs) on rectangular domains. We frst discretise the PDE problem, using Spline Collocation, a method of Finite Element type based on smooth splines. This gives rise to a sparse linear system of equations. The ICCG method provides us with a very effient, but not straightfarward parallelisable linear solver for such systems. On the (other hand, DD methods are very effective for elliptic PD.Es. A combination of DD and ICCG methods, in which the subdomain solves are carried out with ICCG, leads to eflcient and highly parallelisable solvers. We implement this hybrid DD-ICCG method on a hypercube, discuss its parallel eflciency, and show results from expieriments on configurations with up to 32 processors. We apply a totally local communication scheme and discuss its performance on the iPSCI2 hypercube. A similsrr approach can be used with other PDE discretisation methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信