{"title":"旅行计划活动的一揽子推荐框架","authors":"Idir Benouaret, D. Lenne","doi":"10.1145/2959100.2959183","DOIUrl":null,"url":null,"abstract":"Classical recommender systems provide users with ranked lists of recommendations, where each one consists of a single item. However, these ranked lists are not suitable for applications such as trip planning, which deal with heterogeneous items. In this paper, we focus on the problem of recommending a set of packages to the user, where each package is constituted with a set of different Points of Interest that may constitute a tour. Given a collection of POIs, our goal is to recommend the most interesting packages for the user, where each package satisfies the budget constraints. We formally define the problem and we present a novel composite recommendation system, inspired from composite retrieval. Experimental evaluation of our proposed system, using a real-world dataset demonstrates its quality and its ability to improve both diversity and relevance of recommendations.","PeriodicalId":315651,"journal":{"name":"Proceedings of the 10th ACM Conference on Recommender Systems","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"A Package Recommendation Framework for Trip Planning Activities\",\"authors\":\"Idir Benouaret, D. Lenne\",\"doi\":\"10.1145/2959100.2959183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classical recommender systems provide users with ranked lists of recommendations, where each one consists of a single item. However, these ranked lists are not suitable for applications such as trip planning, which deal with heterogeneous items. In this paper, we focus on the problem of recommending a set of packages to the user, where each package is constituted with a set of different Points of Interest that may constitute a tour. Given a collection of POIs, our goal is to recommend the most interesting packages for the user, where each package satisfies the budget constraints. We formally define the problem and we present a novel composite recommendation system, inspired from composite retrieval. Experimental evaluation of our proposed system, using a real-world dataset demonstrates its quality and its ability to improve both diversity and relevance of recommendations.\",\"PeriodicalId\":315651,\"journal\":{\"name\":\"Proceedings of the 10th ACM Conference on Recommender Systems\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 10th ACM Conference on Recommender Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2959100.2959183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2959100.2959183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Package Recommendation Framework for Trip Planning Activities
Classical recommender systems provide users with ranked lists of recommendations, where each one consists of a single item. However, these ranked lists are not suitable for applications such as trip planning, which deal with heterogeneous items. In this paper, we focus on the problem of recommending a set of packages to the user, where each package is constituted with a set of different Points of Interest that may constitute a tour. Given a collection of POIs, our goal is to recommend the most interesting packages for the user, where each package satisfies the budget constraints. We formally define the problem and we present a novel composite recommendation system, inspired from composite retrieval. Experimental evaluation of our proposed system, using a real-world dataset demonstrates its quality and its ability to improve both diversity and relevance of recommendations.