广义Dirichlet隐马尔可夫模型递归参数估计在智能建筑占用估计中的应用

Fatemeh Rezapoor Nikroo, Manar Amayri, N. Bouguila
{"title":"广义Dirichlet隐马尔可夫模型递归参数估计在智能建筑占用估计中的应用","authors":"Fatemeh Rezapoor Nikroo, Manar Amayri, N. Bouguila","doi":"10.1109/IAICT55358.2022.9887378","DOIUrl":null,"url":null,"abstract":"Hidden Markov model (HMM) is a classic machine learning technique to model sequences. Analyzing the characteristics of this model has been extensively studied in the past. In this paper we go through parameter estimation of HMM. We apply recursive technique in order to be able to handle real time data without suffering from extensive time complexity and memory usage in calculation. In this context, we investigate recursive parameter estimation of generalized Dirichlet (GD) HMM via the expectation-maximization (EM) framework. The GD HMM is shown to be an interesting alternative to the Dirichlet HMM. Extensive simulations based on synthetic and real data to estimate occupancy in smart buildings show the effectiveness of the recursive approach for parameter estimation.","PeriodicalId":154027,"journal":{"name":"2022 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recursive Parameter Estimation of Generalized Dirichlet Hidden Markov Models: Application to Occupancy Estimation in Smart Buildings\",\"authors\":\"Fatemeh Rezapoor Nikroo, Manar Amayri, N. Bouguila\",\"doi\":\"10.1109/IAICT55358.2022.9887378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hidden Markov model (HMM) is a classic machine learning technique to model sequences. Analyzing the characteristics of this model has been extensively studied in the past. In this paper we go through parameter estimation of HMM. We apply recursive technique in order to be able to handle real time data without suffering from extensive time complexity and memory usage in calculation. In this context, we investigate recursive parameter estimation of generalized Dirichlet (GD) HMM via the expectation-maximization (EM) framework. The GD HMM is shown to be an interesting alternative to the Dirichlet HMM. Extensive simulations based on synthetic and real data to estimate occupancy in smart buildings show the effectiveness of the recursive approach for parameter estimation.\",\"PeriodicalId\":154027,\"journal\":{\"name\":\"2022 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAICT55358.2022.9887378\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAICT55358.2022.9887378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

隐马尔可夫模型(HMM)是一种经典的序列建模机器学习技术。分析该模型的特性在过去已经得到了广泛的研究。本文主要研究HMM的参数估计。我们采用递归技术是为了能够处理实时数据,而不会在计算中造成大量的时间复杂性和内存占用。在此背景下,我们通过期望最大化(EM)框架研究广义Dirichlet HMM的递归参数估计。GD HMM被证明是狄利克雷HMM的一个有趣的替代方案。基于综合数据和真实数据的大量仿真表明,递归参数估计方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recursive Parameter Estimation of Generalized Dirichlet Hidden Markov Models: Application to Occupancy Estimation in Smart Buildings
Hidden Markov model (HMM) is a classic machine learning technique to model sequences. Analyzing the characteristics of this model has been extensively studied in the past. In this paper we go through parameter estimation of HMM. We apply recursive technique in order to be able to handle real time data without suffering from extensive time complexity and memory usage in calculation. In this context, we investigate recursive parameter estimation of generalized Dirichlet (GD) HMM via the expectation-maximization (EM) framework. The GD HMM is shown to be an interesting alternative to the Dirichlet HMM. Extensive simulations based on synthetic and real data to estimate occupancy in smart buildings show the effectiveness of the recursive approach for parameter estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信