{"title":"INSPIRE:基于协议和架构协同设计的存储私有信息检索","authors":"Jilan Lin, Ling Liang, Zheng Qu, Ishtiyaque Ahmad, L. Liu, Fengbin Tu, Trinabh Gupta, Yufei Ding, Yuan Xie","doi":"10.1145/3470496.3527433","DOIUrl":null,"url":null,"abstract":"Private Information Retrieval (PIR) plays a vital role in secure, database-centric applications. However, existing PIR protocols explore a massive working space containing hundreds of GiBs of query and database data. As a consequence, PIR performance is severely bounded by storage communication, making it far from practical for real-world deployment. In this work, we describe INSPIRE, an accelerator for IN-Storage Private Information REtrieval. INSPIRE follows a protocol and architecture co-design approach. We first design the INSPIRE protocol with a multi-stage filtering mechanism, which achieves a constant PIR query size. For a 1-billion-entry database of size 288GiB, INSPIRE's protocol reduces the query size from 27GiB to 3.6MiB. Further, we propose the INSPIRE hardware, a heterogeneous in-storage architecture, which integrates our protocol across the SSD hierarchy. Together with the INSPIRE protocol, the INSPIRE hardware reduces the query time from 28.4min to 36s, relative to the the state-of-the-art FastPIR scheme.","PeriodicalId":337932,"journal":{"name":"Proceedings of the 49th Annual International Symposium on Computer Architecture","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"INSPIRE: in-storage private information retrieval via protocol and architecture co-design\",\"authors\":\"Jilan Lin, Ling Liang, Zheng Qu, Ishtiyaque Ahmad, L. Liu, Fengbin Tu, Trinabh Gupta, Yufei Ding, Yuan Xie\",\"doi\":\"10.1145/3470496.3527433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Private Information Retrieval (PIR) plays a vital role in secure, database-centric applications. However, existing PIR protocols explore a massive working space containing hundreds of GiBs of query and database data. As a consequence, PIR performance is severely bounded by storage communication, making it far from practical for real-world deployment. In this work, we describe INSPIRE, an accelerator for IN-Storage Private Information REtrieval. INSPIRE follows a protocol and architecture co-design approach. We first design the INSPIRE protocol with a multi-stage filtering mechanism, which achieves a constant PIR query size. For a 1-billion-entry database of size 288GiB, INSPIRE's protocol reduces the query size from 27GiB to 3.6MiB. Further, we propose the INSPIRE hardware, a heterogeneous in-storage architecture, which integrates our protocol across the SSD hierarchy. Together with the INSPIRE protocol, the INSPIRE hardware reduces the query time from 28.4min to 36s, relative to the the state-of-the-art FastPIR scheme.\",\"PeriodicalId\":337932,\"journal\":{\"name\":\"Proceedings of the 49th Annual International Symposium on Computer Architecture\",\"volume\":\"109 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 49th Annual International Symposium on Computer Architecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3470496.3527433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual International Symposium on Computer Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3470496.3527433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
INSPIRE: in-storage private information retrieval via protocol and architecture co-design
Private Information Retrieval (PIR) plays a vital role in secure, database-centric applications. However, existing PIR protocols explore a massive working space containing hundreds of GiBs of query and database data. As a consequence, PIR performance is severely bounded by storage communication, making it far from practical for real-world deployment. In this work, we describe INSPIRE, an accelerator for IN-Storage Private Information REtrieval. INSPIRE follows a protocol and architecture co-design approach. We first design the INSPIRE protocol with a multi-stage filtering mechanism, which achieves a constant PIR query size. For a 1-billion-entry database of size 288GiB, INSPIRE's protocol reduces the query size from 27GiB to 3.6MiB. Further, we propose the INSPIRE hardware, a heterogeneous in-storage architecture, which integrates our protocol across the SSD hierarchy. Together with the INSPIRE protocol, the INSPIRE hardware reduces the query time from 28.4min to 36s, relative to the the state-of-the-art FastPIR scheme.