Tsallis熵在分类数据聚类中的有效性

Shachi Sharma, I. Bassi
{"title":"Tsallis熵在分类数据聚类中的有效性","authors":"Shachi Sharma, I. Bassi","doi":"10.1109/IBSSC47189.2019.8973057","DOIUrl":null,"url":null,"abstract":"Categorical data clustering is an important area of research today as databases usually contain categorical data [1]. The current work proposes that the behavior of attributes in categorical dataset is important in selecting the clustering algorithm. A Tsallis entropy based categorical data clustering (TEC) algorithm is also presented. It is shown that when the attributes depict power law behavior, the proposed TEC algorithm outperforms existing Shannon entropy based clustering algorithms. Experimental results on UCI and WEB KB datasets validates the efficacy of TEC algorithm.","PeriodicalId":148941,"journal":{"name":"2019 IEEE Bombay Section Signature Conference (IBSSC)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Efficacy of Tsallis Entropy in Clustering Categorical Data\",\"authors\":\"Shachi Sharma, I. Bassi\",\"doi\":\"10.1109/IBSSC47189.2019.8973057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Categorical data clustering is an important area of research today as databases usually contain categorical data [1]. The current work proposes that the behavior of attributes in categorical dataset is important in selecting the clustering algorithm. A Tsallis entropy based categorical data clustering (TEC) algorithm is also presented. It is shown that when the attributes depict power law behavior, the proposed TEC algorithm outperforms existing Shannon entropy based clustering algorithms. Experimental results on UCI and WEB KB datasets validates the efficacy of TEC algorithm.\",\"PeriodicalId\":148941,\"journal\":{\"name\":\"2019 IEEE Bombay Section Signature Conference (IBSSC)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Bombay Section Signature Conference (IBSSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IBSSC47189.2019.8973057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Bombay Section Signature Conference (IBSSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IBSSC47189.2019.8973057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

分类数据聚类是当今研究的一个重要领域,因为数据库通常包含分类数据[1]。目前的研究表明,分类数据集中属性的行为对聚类算法的选择很重要。提出了一种基于Tsallis熵的分类数据聚类(TEC)算法。结果表明,当属性描述幂律行为时,所提出的TEC算法优于现有的基于香农熵的聚类算法。在UCI和WEB KB数据集上的实验结果验证了TEC算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficacy of Tsallis Entropy in Clustering Categorical Data
Categorical data clustering is an important area of research today as databases usually contain categorical data [1]. The current work proposes that the behavior of attributes in categorical dataset is important in selecting the clustering algorithm. A Tsallis entropy based categorical data clustering (TEC) algorithm is also presented. It is shown that when the attributes depict power law behavior, the proposed TEC algorithm outperforms existing Shannon entropy based clustering algorithms. Experimental results on UCI and WEB KB datasets validates the efficacy of TEC algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信