一种模糊覆盖生成模糊词库的方法

R. Intan, Masao Mukaidono
{"title":"一种模糊覆盖生成模糊词库的方法","authors":"R. Intan, Masao Mukaidono","doi":"10.1109/NAFIPS.2003.1226775","DOIUrl":null,"url":null,"abstract":"This paper discusses preciseness of data in terms of obtaining degree of similarity in which a fuzzy set can be used as an alternative to represent imprecise data. Degree of similarity between two imprecise data represented in two fuzzy sets is approximately determined by using a fuzzy conditional probability relation. More-over, the degree of similarity relationship between fuzzy sets corresponding to fuzzy classes as results of a fuzzy partition on a given finite set of data is examined. Related to a well known fuzzy partition, called fuzzy pseudopartition or fuzzy c-partition where c designates the number of fuzzy classes in the partition, we introduced fuzzy symmetric c-partition regarded as a special case of the fuzzy c-partition. In addition, we also introduced fuzzy covering as a generalization of fuzzy partition. Similarly, two fuzzy coverings, namely fuzzy c-covering and fuzzy symmetric c-covering are proposed corresponding to the fuzzy c-partition and the fuzzy symmetric c-partition, respectively. In this paper, special attention will be given to apply the concept of fuzzy c-covering in generating a fuzzy thesaurus.","PeriodicalId":153530,"journal":{"name":"22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A proposal of fuzzy thesaurus generated by fuzzy covering\",\"authors\":\"R. Intan, Masao Mukaidono\",\"doi\":\"10.1109/NAFIPS.2003.1226775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses preciseness of data in terms of obtaining degree of similarity in which a fuzzy set can be used as an alternative to represent imprecise data. Degree of similarity between two imprecise data represented in two fuzzy sets is approximately determined by using a fuzzy conditional probability relation. More-over, the degree of similarity relationship between fuzzy sets corresponding to fuzzy classes as results of a fuzzy partition on a given finite set of data is examined. Related to a well known fuzzy partition, called fuzzy pseudopartition or fuzzy c-partition where c designates the number of fuzzy classes in the partition, we introduced fuzzy symmetric c-partition regarded as a special case of the fuzzy c-partition. In addition, we also introduced fuzzy covering as a generalization of fuzzy partition. Similarly, two fuzzy coverings, namely fuzzy c-covering and fuzzy symmetric c-covering are proposed corresponding to the fuzzy c-partition and the fuzzy symmetric c-partition, respectively. In this paper, special attention will be given to apply the concept of fuzzy c-covering in generating a fuzzy thesaurus.\",\"PeriodicalId\":153530,\"journal\":{\"name\":\"22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAFIPS.2003.1226775\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2003.1226775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文从获得相似度的角度讨论了数据的精确性,其中模糊集可以作为表示不精确数据的替代方法。用模糊条件概率关系近似确定了用两个模糊集表示的两个不精确数据之间的相似度。此外,还研究了给定有限数据集上的模糊划分结果所对应的模糊类的模糊集之间的相似度关系。本文引入模糊对称c划分作为模糊c划分的一种特殊情况,与模糊伪划分或模糊c划分(其中c表示划分中模糊类的个数)有关。此外,我们还引入了模糊覆盖作为模糊划分的推广。同样,针对模糊c-划分和模糊对称c-划分,分别提出了模糊c-覆盖和模糊对称c-覆盖两种模糊覆盖。本文将特别关注模糊c-覆盖的概念在模糊词库生成中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A proposal of fuzzy thesaurus generated by fuzzy covering
This paper discusses preciseness of data in terms of obtaining degree of similarity in which a fuzzy set can be used as an alternative to represent imprecise data. Degree of similarity between two imprecise data represented in two fuzzy sets is approximately determined by using a fuzzy conditional probability relation. More-over, the degree of similarity relationship between fuzzy sets corresponding to fuzzy classes as results of a fuzzy partition on a given finite set of data is examined. Related to a well known fuzzy partition, called fuzzy pseudopartition or fuzzy c-partition where c designates the number of fuzzy classes in the partition, we introduced fuzzy symmetric c-partition regarded as a special case of the fuzzy c-partition. In addition, we also introduced fuzzy covering as a generalization of fuzzy partition. Similarly, two fuzzy coverings, namely fuzzy c-covering and fuzzy symmetric c-covering are proposed corresponding to the fuzzy c-partition and the fuzzy symmetric c-partition, respectively. In this paper, special attention will be given to apply the concept of fuzzy c-covering in generating a fuzzy thesaurus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信