攻击基于相似度的符号预测

M. T. Godziszewski, Tomasz P. Michalak, Marcin Waniek, Talal Rahwan, Kai Zhou, Yulin Zhu
{"title":"攻击基于相似度的符号预测","authors":"M. T. Godziszewski, Tomasz P. Michalak, Marcin Waniek, Talal Rahwan, Kai Zhou, Yulin Zhu","doi":"10.1109/ICDM51629.2021.00173","DOIUrl":null,"url":null,"abstract":"In this paper, we present a computational analysis of the problem of attacking sign prediction, whereby the aim of the attacker (a network member) is to hide from the defender (an analyst) the signs of a target set of links by removing the signs of some other, non-target, links. The problem turns out to be NP-hard if either local or global similarity measures are used for sign prediction. We propose a heuristic algorithm and test its effectiveness on several real-life and synthetic datasets.","PeriodicalId":320970,"journal":{"name":"2021 IEEE International Conference on Data Mining (ICDM)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Attacking Similarity-Based Sign Prediction\",\"authors\":\"M. T. Godziszewski, Tomasz P. Michalak, Marcin Waniek, Talal Rahwan, Kai Zhou, Yulin Zhu\",\"doi\":\"10.1109/ICDM51629.2021.00173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a computational analysis of the problem of attacking sign prediction, whereby the aim of the attacker (a network member) is to hide from the defender (an analyst) the signs of a target set of links by removing the signs of some other, non-target, links. The problem turns out to be NP-hard if either local or global similarity measures are used for sign prediction. We propose a heuristic algorithm and test its effectiveness on several real-life and synthetic datasets.\",\"PeriodicalId\":320970,\"journal\":{\"name\":\"2021 IEEE International Conference on Data Mining (ICDM)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Data Mining (ICDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM51629.2021.00173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Data Mining (ICDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM51629.2021.00173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在本文中,我们提出了攻击符号预测问题的计算分析,其中攻击者(网络成员)的目的是通过删除一些其他非目标链接的符号来向防御者(分析者)隐藏目标链接集的符号。如果使用局部或全局相似性度量来进行符号预测,问题就会变成np困难。我们提出了一种启发式算法,并在几个真实数据集和合成数据集上测试了它的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Attacking Similarity-Based Sign Prediction
In this paper, we present a computational analysis of the problem of attacking sign prediction, whereby the aim of the attacker (a network member) is to hide from the defender (an analyst) the signs of a target set of links by removing the signs of some other, non-target, links. The problem turns out to be NP-hard if either local or global similarity measures are used for sign prediction. We propose a heuristic algorithm and test its effectiveness on several real-life and synthetic datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信