MLExchange:一个基于web的平台,为科学研究提供可交换的机器学习工作流程

Zhuowen Zhao, Tanny Chavez, Elizabeth Holman, Guanhua Hao, A. Green, Harinarayan Krishnan, Dylan McReynolds, R. Pandolfi, Eric J. Roberts, Petrus H. Zwart, Howard Yanxon, N. Schwarz, S. Sankaranarayanan, S. Kalinin, Apurva Mehta, Stuart Campbell, A. Hexemer
{"title":"MLExchange:一个基于web的平台,为科学研究提供可交换的机器学习工作流程","authors":"Zhuowen Zhao, Tanny Chavez, Elizabeth Holman, Guanhua Hao, A. Green, Harinarayan Krishnan, Dylan McReynolds, R. Pandolfi, Eric J. Roberts, Petrus H. Zwart, Howard Yanxon, N. Schwarz, S. Sankaranarayanan, S. Kalinin, Apurva Mehta, Stuart Campbell, A. Hexemer","doi":"10.1109/XLOOP56614.2022.00007","DOIUrl":null,"url":null,"abstract":"Machine learning (ML) algorithms are showing a growing trend in helping the scientific communities across different disciplines and institutions to address large and diverse data problems. However, many available ML tools are programmatically demanding and computationally costly. The MLExchange project aims to build a collaborative platform equipped with enabling tools that allow scientists and facility users who do not have a profound ML background to use ML and computational resources in scientific discovery. At the high level, we are targeting a full user experience where managing and exchanging ML algorithms, workflows, and data are readily available through web applications. Since each component is an independent container, the whole platform or its individual service(s) can be easily deployed at servers of different scales, ranging from a personal device (laptop, smart phone, etc.) to high performance clusters (HPC) accessed (simultaneously) by many users. Thus, MLExchange renders flexible using scenarios–-users could either access the services and resources from a remote server or run the whole platform or its individual service(s) within their local network.","PeriodicalId":401106,"journal":{"name":"2022 4th Annual Workshop on Extreme-scale Experiment-in-the-Loop Computing (XLOOP)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"MLExchange: A web-based platform enabling exchangeable machine learning workflows for scientific studies\",\"authors\":\"Zhuowen Zhao, Tanny Chavez, Elizabeth Holman, Guanhua Hao, A. Green, Harinarayan Krishnan, Dylan McReynolds, R. Pandolfi, Eric J. Roberts, Petrus H. Zwart, Howard Yanxon, N. Schwarz, S. Sankaranarayanan, S. Kalinin, Apurva Mehta, Stuart Campbell, A. Hexemer\",\"doi\":\"10.1109/XLOOP56614.2022.00007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning (ML) algorithms are showing a growing trend in helping the scientific communities across different disciplines and institutions to address large and diverse data problems. However, many available ML tools are programmatically demanding and computationally costly. The MLExchange project aims to build a collaborative platform equipped with enabling tools that allow scientists and facility users who do not have a profound ML background to use ML and computational resources in scientific discovery. At the high level, we are targeting a full user experience where managing and exchanging ML algorithms, workflows, and data are readily available through web applications. Since each component is an independent container, the whole platform or its individual service(s) can be easily deployed at servers of different scales, ranging from a personal device (laptop, smart phone, etc.) to high performance clusters (HPC) accessed (simultaneously) by many users. Thus, MLExchange renders flexible using scenarios–-users could either access the services and resources from a remote server or run the whole platform or its individual service(s) within their local network.\",\"PeriodicalId\":401106,\"journal\":{\"name\":\"2022 4th Annual Workshop on Extreme-scale Experiment-in-the-Loop Computing (XLOOP)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 4th Annual Workshop on Extreme-scale Experiment-in-the-Loop Computing (XLOOP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/XLOOP56614.2022.00007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th Annual Workshop on Extreme-scale Experiment-in-the-Loop Computing (XLOOP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/XLOOP56614.2022.00007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

机器学习(ML)算法在帮助不同学科和机构的科学界解决大型和多样化的数据问题方面呈现出越来越大的趋势。然而,许多可用的ML工具在编程上要求很高,计算成本也很高。MLExchange项目旨在建立一个协作平台,配备支持工具,使没有深厚ML背景的科学家和设施用户能够在科学发现中使用ML和计算资源。在高层次上,我们的目标是一个完整的用户体验,其中管理和交换ML算法,工作流和数据随时可以通过web应用程序获得。由于每个组件都是一个独立的容器,因此整个平台或其单独的服务可以很容易地部署在不同规模的服务器上,范围从个人设备(笔记本电脑、智能手机等)到许多用户同时访问的高性能集群(HPC)。因此,MLExchange提供了灵活的使用场景——用户可以从远程服务器访问服务和资源,也可以在本地网络中运行整个平台或其单个服务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MLExchange: A web-based platform enabling exchangeable machine learning workflows for scientific studies
Machine learning (ML) algorithms are showing a growing trend in helping the scientific communities across different disciplines and institutions to address large and diverse data problems. However, many available ML tools are programmatically demanding and computationally costly. The MLExchange project aims to build a collaborative platform equipped with enabling tools that allow scientists and facility users who do not have a profound ML background to use ML and computational resources in scientific discovery. At the high level, we are targeting a full user experience where managing and exchanging ML algorithms, workflows, and data are readily available through web applications. Since each component is an independent container, the whole platform or its individual service(s) can be easily deployed at servers of different scales, ranging from a personal device (laptop, smart phone, etc.) to high performance clusters (HPC) accessed (simultaneously) by many users. Thus, MLExchange renders flexible using scenarios–-users could either access the services and resources from a remote server or run the whole platform or its individual service(s) within their local network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信