{"title":"基于回归的生物地理优化软件故障预测","authors":"N. A. Aarti, Geeta Sikka, R. Dhir","doi":"10.1504/ijisdc.2019.10027407","DOIUrl":null,"url":null,"abstract":"It is difficult to build model of accurate estimate due to the inherent uncertainty and similarity among different categories in development projects. In this paper, fault prediction is done using biogeography-based optimisation (BBO) with the goal of recognising the faults in software systems in more efficient way. Our methodology includes four steps as follows: 1) firstly pre-processing was employed to remove redundant data; 2) secondly, relevant features are extracted using principal component analysis; 3) thirdly, fault-prediction system based on the optimisation of regression parameter using biogeography-based optimisation (R-BBO) was proposed. The experiment employed over different fault related datasets using ten-fold cross validation. The results showed that proposed prediction system (R-BBO) yield an overall accuracy of 85.4% (predicted over five datasets) which is higher than the prediction using genetic algorithm (R-GA). The proposed R-BBO was effective in terms of classification accuracy, precision and recall.","PeriodicalId":272884,"journal":{"name":"International Journal of Intelligent Systems Design and Computing","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regression-based software fault prediction using biogeography-based optimisation (R-BBO)\",\"authors\":\"N. A. Aarti, Geeta Sikka, R. Dhir\",\"doi\":\"10.1504/ijisdc.2019.10027407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is difficult to build model of accurate estimate due to the inherent uncertainty and similarity among different categories in development projects. In this paper, fault prediction is done using biogeography-based optimisation (BBO) with the goal of recognising the faults in software systems in more efficient way. Our methodology includes four steps as follows: 1) firstly pre-processing was employed to remove redundant data; 2) secondly, relevant features are extracted using principal component analysis; 3) thirdly, fault-prediction system based on the optimisation of regression parameter using biogeography-based optimisation (R-BBO) was proposed. The experiment employed over different fault related datasets using ten-fold cross validation. The results showed that proposed prediction system (R-BBO) yield an overall accuracy of 85.4% (predicted over five datasets) which is higher than the prediction using genetic algorithm (R-GA). The proposed R-BBO was effective in terms of classification accuracy, precision and recall.\",\"PeriodicalId\":272884,\"journal\":{\"name\":\"International Journal of Intelligent Systems Design and Computing\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Systems Design and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijisdc.2019.10027407\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems Design and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijisdc.2019.10027407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Regression-based software fault prediction using biogeography-based optimisation (R-BBO)
It is difficult to build model of accurate estimate due to the inherent uncertainty and similarity among different categories in development projects. In this paper, fault prediction is done using biogeography-based optimisation (BBO) with the goal of recognising the faults in software systems in more efficient way. Our methodology includes four steps as follows: 1) firstly pre-processing was employed to remove redundant data; 2) secondly, relevant features are extracted using principal component analysis; 3) thirdly, fault-prediction system based on the optimisation of regression parameter using biogeography-based optimisation (R-BBO) was proposed. The experiment employed over different fault related datasets using ten-fold cross validation. The results showed that proposed prediction system (R-BBO) yield an overall accuracy of 85.4% (predicted over five datasets) which is higher than the prediction using genetic algorithm (R-GA). The proposed R-BBO was effective in terms of classification accuracy, precision and recall.