xfeature:用于DNN自动调优的硬件特征提取

J. Acosta, Andreas Diavastos, Antonio González
{"title":"xfeature:用于DNN自动调优的硬件特征提取","authors":"J. Acosta, Andreas Diavastos, Antonio González","doi":"10.1109/ispass55109.2022.00013","DOIUrl":null,"url":null,"abstract":"In this work, we extend the auto-tuning process of the state-of-the-art TVM framework with XFeatur; a tool that extracts new meaningful hardware-related features that improve the quality of the representation of the search space and consequently improve the accuracy of its prediction algorithm. These new features provide information about the amount of thread-level parallelism, shared memory usage, register usage, dynamic instruction count and memory access dependencies. Optimizing ResNet-18 with the proposed features improves the quality of the search space representation by 63% on average and a maximum of 2× for certain tasks, while it reduces the tuning time by 9% (approximately 1.1 hours) and produces configurations that have equal or better performance (up to 92.7%) than the baseline.","PeriodicalId":115391,"journal":{"name":"2022 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"XFeatur: Hardware Feature Extraction for DNN Auto-tuning\",\"authors\":\"J. Acosta, Andreas Diavastos, Antonio González\",\"doi\":\"10.1109/ispass55109.2022.00013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we extend the auto-tuning process of the state-of-the-art TVM framework with XFeatur; a tool that extracts new meaningful hardware-related features that improve the quality of the representation of the search space and consequently improve the accuracy of its prediction algorithm. These new features provide information about the amount of thread-level parallelism, shared memory usage, register usage, dynamic instruction count and memory access dependencies. Optimizing ResNet-18 with the proposed features improves the quality of the search space representation by 63% on average and a maximum of 2× for certain tasks, while it reduces the tuning time by 9% (approximately 1.1 hours) and produces configurations that have equal or better performance (up to 92.7%) than the baseline.\",\"PeriodicalId\":115391,\"journal\":{\"name\":\"2022 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ispass55109.2022.00013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ispass55109.2022.00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们使用xfeature扩展了最先进的TVM框架的自动调优过程;一种提取新的有意义的硬件相关特征的工具,这些特征可以提高搜索空间的表示质量,从而提高其预测算法的准确性。这些新特性提供了有关线程级并行性、共享内存使用、寄存器使用、动态指令计数和内存访问依赖关系的信息。使用建议的特性优化ResNet-18,平均将搜索空间表示的质量提高63%,对于某些任务,最高可提高2倍,同时将调优时间减少9%(约1.1小时),并产生与基线相同或更好的性能(高达92.7%)的配置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
XFeatur: Hardware Feature Extraction for DNN Auto-tuning
In this work, we extend the auto-tuning process of the state-of-the-art TVM framework with XFeatur; a tool that extracts new meaningful hardware-related features that improve the quality of the representation of the search space and consequently improve the accuracy of its prediction algorithm. These new features provide information about the amount of thread-level parallelism, shared memory usage, register usage, dynamic instruction count and memory access dependencies. Optimizing ResNet-18 with the proposed features improves the quality of the search space representation by 63% on average and a maximum of 2× for certain tasks, while it reduces the tuning time by 9% (approximately 1.1 hours) and produces configurations that have equal or better performance (up to 92.7%) than the baseline.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信