基于LDA的彩色人脸识别改进NMF

Xiaoming Bai, Chengzhang Wang
{"title":"基于LDA的彩色人脸识别改进NMF","authors":"Xiaoming Bai, Chengzhang Wang","doi":"10.1109/ICNDS.2010.5479607","DOIUrl":null,"url":null,"abstract":"Color face is composed of information of different channels and provides more cues for recognition than grey scale one. A revised NMF with LDA based color face recognition approach is proposed in this paper. Block diagonal matrix is exploited to encode color information of different channels. And block diagonal constraint is imposed on NMF to factorize matrix. Class information of face samples is integrated into the approach through LDA on factorization coefficients. Experimental results on CVL and CMU PIE databases verify the effectiveness of the proposed approach.","PeriodicalId":403283,"journal":{"name":"2010 International Conference on Networking and Digital Society","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Revised NMF with LDA based color face recognition\",\"authors\":\"Xiaoming Bai, Chengzhang Wang\",\"doi\":\"10.1109/ICNDS.2010.5479607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Color face is composed of information of different channels and provides more cues for recognition than grey scale one. A revised NMF with LDA based color face recognition approach is proposed in this paper. Block diagonal matrix is exploited to encode color information of different channels. And block diagonal constraint is imposed on NMF to factorize matrix. Class information of face samples is integrated into the approach through LDA on factorization coefficients. Experimental results on CVL and CMU PIE databases verify the effectiveness of the proposed approach.\",\"PeriodicalId\":403283,\"journal\":{\"name\":\"2010 International Conference on Networking and Digital Society\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Networking and Digital Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNDS.2010.5479607\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Networking and Digital Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNDS.2010.5479607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

彩色人脸由不同通道的信息组成,比灰度人脸提供了更多的识别线索。提出了一种改进的基于LDA的NMF彩色人脸识别方法。利用分块对角矩阵对不同信道的颜色信息进行编码。并对NMF施加对角块约束,对矩阵进行因式分解。通过对分解系数的LDA,将人脸样本的分类信息整合到该方法中。在CVL和CMU PIE数据库上的实验结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Revised NMF with LDA based color face recognition
Color face is composed of information of different channels and provides more cues for recognition than grey scale one. A revised NMF with LDA based color face recognition approach is proposed in this paper. Block diagonal matrix is exploited to encode color information of different channels. And block diagonal constraint is imposed on NMF to factorize matrix. Class information of face samples is integrated into the approach through LDA on factorization coefficients. Experimental results on CVL and CMU PIE databases verify the effectiveness of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信