在不计算相位的情况下对信号集合中的傅里叶相位信息进行平均

H. W. Swan, J. Goodman
{"title":"在不计算相位的情况下对信号集合中的傅里叶相位信息进行平均","authors":"H. W. Swan, J. Goodman","doi":"10.1364/srs.1983.tha10","DOIUrl":null,"url":null,"abstract":"A length-M discrete stochastic process, s(k), and a length-N deterministic sequence, h(k), are convolved to yield the discrete stochastic process, x(k). If we take the length-L discrete Fourier transform of s(k), h(k), and x(k), where L is some integer greater than N+M−2, and pad with zeros as necessary, then (1) for 0 ≤ n < L. Here H(n) is deterministic while X(n) and S(n) are stochastic. Given an ensemble of the process x(k), and sufficient knowledge of the self-statistics of s(k), we wish to recover h(k). Problems such as this arise in the fields of geophysics, radar signal processing, and space object imaging. Although it is easy to estimate the Fourier magnitude of h(k) from (2) estimating the phase of H(n) can be difficult, due to the phase unwrapping problem[1]. The difficulty is worsened by observational noise and by extending the problem to 2-dimensional images.","PeriodicalId":279385,"journal":{"name":"Topical Meeting on Signal Recovery and Synthesis with Incomplete Information and Partial Constraints","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Averaging the Fourier Phase Information in a Signal Ensemble without Calculating Phase\",\"authors\":\"H. W. Swan, J. Goodman\",\"doi\":\"10.1364/srs.1983.tha10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A length-M discrete stochastic process, s(k), and a length-N deterministic sequence, h(k), are convolved to yield the discrete stochastic process, x(k). If we take the length-L discrete Fourier transform of s(k), h(k), and x(k), where L is some integer greater than N+M−2, and pad with zeros as necessary, then (1) for 0 ≤ n < L. Here H(n) is deterministic while X(n) and S(n) are stochastic. Given an ensemble of the process x(k), and sufficient knowledge of the self-statistics of s(k), we wish to recover h(k). Problems such as this arise in the fields of geophysics, radar signal processing, and space object imaging. Although it is easy to estimate the Fourier magnitude of h(k) from (2) estimating the phase of H(n) can be difficult, due to the phase unwrapping problem[1]. The difficulty is worsened by observational noise and by extending the problem to 2-dimensional images.\",\"PeriodicalId\":279385,\"journal\":{\"name\":\"Topical Meeting on Signal Recovery and Synthesis with Incomplete Information and Partial Constraints\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topical Meeting on Signal Recovery and Synthesis with Incomplete Information and Partial Constraints\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/srs.1983.tha10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topical Meeting on Signal Recovery and Synthesis with Incomplete Information and Partial Constraints","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/srs.1983.tha10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

一个长度为m的离散随机过程s(k)和一个长度为n的确定性序列h(k)进行卷积得到离散随机过程x(k)。如果我们对s(k), h(k)和x(k)进行长度为L的离散傅里叶变换,其中L是大于N+M−2的整数,并且必要时加上零,则(1)对于0≤N < L。这里h(N)是确定性的,而x(N)和s(N)是随机的。给定过程x(k)的集合,以及s(k)的自统计量的足够知识,我们希望恢复h(k)。诸如此类的问题出现在地球物理、雷达信号处理和空间物体成像等领域。虽然很容易从(2)中估计h(k)的傅里叶幅值,但由于相位展开问题[1],估计h(n)的相位可能很困难。由于观测噪声和将问题扩展到二维图像,困难变得更加严重。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Averaging the Fourier Phase Information in a Signal Ensemble without Calculating Phase
A length-M discrete stochastic process, s(k), and a length-N deterministic sequence, h(k), are convolved to yield the discrete stochastic process, x(k). If we take the length-L discrete Fourier transform of s(k), h(k), and x(k), where L is some integer greater than N+M−2, and pad with zeros as necessary, then (1) for 0 ≤ n < L. Here H(n) is deterministic while X(n) and S(n) are stochastic. Given an ensemble of the process x(k), and sufficient knowledge of the self-statistics of s(k), we wish to recover h(k). Problems such as this arise in the fields of geophysics, radar signal processing, and space object imaging. Although it is easy to estimate the Fourier magnitude of h(k) from (2) estimating the phase of H(n) can be difficult, due to the phase unwrapping problem[1]. The difficulty is worsened by observational noise and by extending the problem to 2-dimensional images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信