纤维

Illyoung Choi, A. Ponsero, K. Youens-Clark, Matthew Bomhoff, B. Hurwitz, J. Hartman
{"title":"纤维","authors":"Illyoung Choi, A. Ponsero, K. Youens-Clark, Matthew Bomhoff, B. Hurwitz, J. Hartman","doi":"10.1145/3217880.3217882","DOIUrl":null,"url":null,"abstract":"Big-data analytics platforms, such as Hadoop, are appealing for scientific computation because they are ubiquitous, well-supported, and well-understood. Unfortunately, load-balancing is a common challenge of implementing large-scale scientific computing applications on these platforms. In this paper we present the design and implementation of Libra, a Hadoop-based tool for comparative metagenomics (comparing samples of genetic material collected from the environment). We describe the computation that Libra performs and how that computation is implemented using Hadoop tasks, including the techniques used by Libra to ensure that the task workloads are balanced despite nonuniform sample sizes and skewed distributions of genetic material in the samples. On a 10-machine Hadoop cluster Libra can analyze the entire Tara Ocean Viromes of ~4.2 billion reads in fewer than 20 hours.","PeriodicalId":340918,"journal":{"name":"Proceedings of the 9th Workshop on Scientific Cloud Computing","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Libra\",\"authors\":\"Illyoung Choi, A. Ponsero, K. Youens-Clark, Matthew Bomhoff, B. Hurwitz, J. Hartman\",\"doi\":\"10.1145/3217880.3217882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Big-data analytics platforms, such as Hadoop, are appealing for scientific computation because they are ubiquitous, well-supported, and well-understood. Unfortunately, load-balancing is a common challenge of implementing large-scale scientific computing applications on these platforms. In this paper we present the design and implementation of Libra, a Hadoop-based tool for comparative metagenomics (comparing samples of genetic material collected from the environment). We describe the computation that Libra performs and how that computation is implemented using Hadoop tasks, including the techniques used by Libra to ensure that the task workloads are balanced despite nonuniform sample sizes and skewed distributions of genetic material in the samples. On a 10-machine Hadoop cluster Libra can analyze the entire Tara Ocean Viromes of ~4.2 billion reads in fewer than 20 hours.\",\"PeriodicalId\":340918,\"journal\":{\"name\":\"Proceedings of the 9th Workshop on Scientific Cloud Computing\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th Workshop on Scientific Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3217880.3217882\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th Workshop on Scientific Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3217880.3217882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Libra
Big-data analytics platforms, such as Hadoop, are appealing for scientific computation because they are ubiquitous, well-supported, and well-understood. Unfortunately, load-balancing is a common challenge of implementing large-scale scientific computing applications on these platforms. In this paper we present the design and implementation of Libra, a Hadoop-based tool for comparative metagenomics (comparing samples of genetic material collected from the environment). We describe the computation that Libra performs and how that computation is implemented using Hadoop tasks, including the techniques used by Libra to ensure that the task workloads are balanced despite nonuniform sample sizes and skewed distributions of genetic material in the samples. On a 10-machine Hadoop cluster Libra can analyze the entire Tara Ocean Viromes of ~4.2 billion reads in fewer than 20 hours.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信