监控视频实时活动搜索

Greg Castañón, Venkatesh Saligrama, André-Louis Caron, Pierre-Marc Jodoin
{"title":"监控视频实时活动搜索","authors":"Greg Castañón, Venkatesh Saligrama, André-Louis Caron, Pierre-Marc Jodoin","doi":"10.1109/AVSS.2012.58","DOIUrl":null,"url":null,"abstract":"We present a fast and flexible content-based retrieval method for surveillance video. Designing a video search robust to uncertain activity duration, high variability in object shapes and scene content is challenging. We propose a two-step approach to video search. First, local motion features are inserted into an inverted index using locality-sensitive hashing (LSH). Second, we utilize a novel optimization approach based on edit distance to minimize temporal distortion, limited obscuration and imperfect queries. This approach assembles the local features stored in the index into a video segment which matches the query video. Pre-processing of archival video is performed in real-time, and retrieval speed scales as a function of the number of matches rather than video length. We demonstrate the effectiveness of the approach for counting, motion pattern recognition and abandoned object applications using a pair of challenging video datasets.","PeriodicalId":275325,"journal":{"name":"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Real-Time Activity Search of Surveillance Video\",\"authors\":\"Greg Castañón, Venkatesh Saligrama, André-Louis Caron, Pierre-Marc Jodoin\",\"doi\":\"10.1109/AVSS.2012.58\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a fast and flexible content-based retrieval method for surveillance video. Designing a video search robust to uncertain activity duration, high variability in object shapes and scene content is challenging. We propose a two-step approach to video search. First, local motion features are inserted into an inverted index using locality-sensitive hashing (LSH). Second, we utilize a novel optimization approach based on edit distance to minimize temporal distortion, limited obscuration and imperfect queries. This approach assembles the local features stored in the index into a video segment which matches the query video. Pre-processing of archival video is performed in real-time, and retrieval speed scales as a function of the number of matches rather than video length. We demonstrate the effectiveness of the approach for counting, motion pattern recognition and abandoned object applications using a pair of challenging video datasets.\",\"PeriodicalId\":275325,\"journal\":{\"name\":\"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AVSS.2012.58\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2012.58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种快速灵活的基于内容的监控视频检索方法。设计一个对不确定的活动持续时间、物体形状和场景内容的高度可变性具有鲁棒性的视频搜索是具有挑战性的。我们提出了一种两步视频搜索方法。首先,使用位置敏感散列(LSH)将局部运动特征插入到倒排索引中。其次,我们利用一种新的基于编辑距离的优化方法来最小化时间失真、有限模糊和不完美查询。该方法将存储在索引中的局部特征组合成与查询视频匹配的视频片段。档案视频的预处理是实时进行的,检索速度是匹配次数的函数而不是视频长度的函数。我们使用一对具有挑战性的视频数据集证明了该方法在计数、运动模式识别和废弃物体应用方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-Time Activity Search of Surveillance Video
We present a fast and flexible content-based retrieval method for surveillance video. Designing a video search robust to uncertain activity duration, high variability in object shapes and scene content is challenging. We propose a two-step approach to video search. First, local motion features are inserted into an inverted index using locality-sensitive hashing (LSH). Second, we utilize a novel optimization approach based on edit distance to minimize temporal distortion, limited obscuration and imperfect queries. This approach assembles the local features stored in the index into a video segment which matches the query video. Pre-processing of archival video is performed in real-time, and retrieval speed scales as a function of the number of matches rather than video length. We demonstrate the effectiveness of the approach for counting, motion pattern recognition and abandoned object applications using a pair of challenging video datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信