具有信息损失函数的状态空间分解模型

D. Jun, Jihwan Moon
{"title":"具有信息损失函数的状态空间分解模型","authors":"D. Jun, Jihwan Moon","doi":"10.2139/ssrn.2360450","DOIUrl":null,"url":null,"abstract":"Different data frequency is a common problem in many research fields; therefore, it should be handled before a particular study is well under way. Many novel ideas including disaggregation techniques, which are the major interest of this study, have been suggested to mitigate the nuisances of mixed-frequency data. In this study, we suggest a generalized framework to disaggregate lower-frequency time series and evaluate the disaggregation performance. The proposed framework combines two models in separate stages: a linear regression model to exploit related independent variables in the first stage and a state space model to disaggregate the residual from the regression in the second stage. For the purpose of providing a set of practical criteria for the disaggregation performance, we measure the information loss that occurs during temporal aggregation while examining what effects take place when aggregating data. To validate the proposed framework, we implement a Monte Carlo simulation and provide an empirical study.","PeriodicalId":418701,"journal":{"name":"ERN: Time-Series Models (Single) (Topic)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"State Space Disaggregation Model with Information Loss Function\",\"authors\":\"D. Jun, Jihwan Moon\",\"doi\":\"10.2139/ssrn.2360450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Different data frequency is a common problem in many research fields; therefore, it should be handled before a particular study is well under way. Many novel ideas including disaggregation techniques, which are the major interest of this study, have been suggested to mitigate the nuisances of mixed-frequency data. In this study, we suggest a generalized framework to disaggregate lower-frequency time series and evaluate the disaggregation performance. The proposed framework combines two models in separate stages: a linear regression model to exploit related independent variables in the first stage and a state space model to disaggregate the residual from the regression in the second stage. For the purpose of providing a set of practical criteria for the disaggregation performance, we measure the information loss that occurs during temporal aggregation while examining what effects take place when aggregating data. To validate the proposed framework, we implement a Monte Carlo simulation and provide an empirical study.\",\"PeriodicalId\":418701,\"journal\":{\"name\":\"ERN: Time-Series Models (Single) (Topic)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Time-Series Models (Single) (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2360450\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Time-Series Models (Single) (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2360450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

不同的数据频率是许多研究领域普遍存在的问题;因此,它应该在一项特定的研究顺利进行之前处理。已经提出了许多新颖的想法,包括分解技术,这是本研究的主要兴趣,以减轻混合频率数据的干扰。在这项研究中,我们提出了一个广义的框架来分解低频时间序列并评估分解性能。提出的框架结合了两个不同阶段的模型:线性回归模型在第一阶段利用相关的自变量,状态空间模型在第二阶段分解回归的残差。为了提供一组分解性能的实用标准,我们测量了在时间聚合期间发生的信息丢失,同时检查了在聚合数据时发生的影响。为了验证所提出的框架,我们实施了蒙特卡罗模拟并提供了实证研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
State Space Disaggregation Model with Information Loss Function
Different data frequency is a common problem in many research fields; therefore, it should be handled before a particular study is well under way. Many novel ideas including disaggregation techniques, which are the major interest of this study, have been suggested to mitigate the nuisances of mixed-frequency data. In this study, we suggest a generalized framework to disaggregate lower-frequency time series and evaluate the disaggregation performance. The proposed framework combines two models in separate stages: a linear regression model to exploit related independent variables in the first stage and a state space model to disaggregate the residual from the regression in the second stage. For the purpose of providing a set of practical criteria for the disaggregation performance, we measure the information loss that occurs during temporal aggregation while examining what effects take place when aggregating data. To validate the proposed framework, we implement a Monte Carlo simulation and provide an empirical study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信