Shingo Murata, Jun Namikawa, H. Arie, J. Tani, S. Sugano
{"title":"学习用带有时变方差估计机制的动态神经网络模型再现波动行为序列","authors":"Shingo Murata, Jun Namikawa, H. Arie, J. Tani, S. Sugano","doi":"10.1109/DEVLRN.2013.6652545","DOIUrl":null,"url":null,"abstract":"This study shows that a novel type of recurrent neural network model can learn to reproduce fluctuating training sequences by inferring their stochastic structures. The network learns to predict not only the mean of the next input state, but also its time-varying variance. The network is trained through maximum likelihood estimation by utilizing the gradient descent method, and the likelihood function is expressed as a function of both the predicted mean and variance. In a numerical experiment, in order to evaluate the performance of the model, we first tested its ability to reproduce fluctuating training sequences generated by a known dynamical system that were perturbed by Gaussian noise with state-dependent variance. Our analysis showed that the network can reproduce the sequences by predicting the variance correctly. Furthermore, the other experiment showed that a humanoid robot equipped with the network can learn to reproduce fluctuating tutoring sequences by inferring latent stochastic structures hidden in the sequences.","PeriodicalId":106997,"journal":{"name":"2013 IEEE Third Joint International Conference on Development and Learning and Epigenetic Robotics (ICDL)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Learning to reproduce fluctuating behavioral sequences using a dynamic neural network model with time-varying variance estimation mechanism\",\"authors\":\"Shingo Murata, Jun Namikawa, H. Arie, J. Tani, S. Sugano\",\"doi\":\"10.1109/DEVLRN.2013.6652545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study shows that a novel type of recurrent neural network model can learn to reproduce fluctuating training sequences by inferring their stochastic structures. The network learns to predict not only the mean of the next input state, but also its time-varying variance. The network is trained through maximum likelihood estimation by utilizing the gradient descent method, and the likelihood function is expressed as a function of both the predicted mean and variance. In a numerical experiment, in order to evaluate the performance of the model, we first tested its ability to reproduce fluctuating training sequences generated by a known dynamical system that were perturbed by Gaussian noise with state-dependent variance. Our analysis showed that the network can reproduce the sequences by predicting the variance correctly. Furthermore, the other experiment showed that a humanoid robot equipped with the network can learn to reproduce fluctuating tutoring sequences by inferring latent stochastic structures hidden in the sequences.\",\"PeriodicalId\":106997,\"journal\":{\"name\":\"2013 IEEE Third Joint International Conference on Development and Learning and Epigenetic Robotics (ICDL)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Third Joint International Conference on Development and Learning and Epigenetic Robotics (ICDL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DEVLRN.2013.6652545\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Third Joint International Conference on Development and Learning and Epigenetic Robotics (ICDL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEVLRN.2013.6652545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Learning to reproduce fluctuating behavioral sequences using a dynamic neural network model with time-varying variance estimation mechanism
This study shows that a novel type of recurrent neural network model can learn to reproduce fluctuating training sequences by inferring their stochastic structures. The network learns to predict not only the mean of the next input state, but also its time-varying variance. The network is trained through maximum likelihood estimation by utilizing the gradient descent method, and the likelihood function is expressed as a function of both the predicted mean and variance. In a numerical experiment, in order to evaluate the performance of the model, we first tested its ability to reproduce fluctuating training sequences generated by a known dynamical system that were perturbed by Gaussian noise with state-dependent variance. Our analysis showed that the network can reproduce the sequences by predicting the variance correctly. Furthermore, the other experiment showed that a humanoid robot equipped with the network can learn to reproduce fluctuating tutoring sequences by inferring latent stochastic structures hidden in the sequences.