{"title":"求解轮班最小化人员任务调度问题的四阶段元启发式算法","authors":"Sebastian Nechita, L. Dioşan","doi":"10.1109/SYNASC.2018.00067","DOIUrl":null,"url":null,"abstract":"The Shift minimization personnel task scheduling problem (SMPTSP) is a known NP-hard problem. The present paper introduces a novel four-phase meta-heuristic approach for solving the Shift minimization personnel task scheduling problem which consists of an optimal assignment of jobs to multi-skilled employees, such that a minimal number of employees is used and no job is left unassigned. The computational results show that the proposed approach is able to find very good solutions in a very short time. The approach was tested and validated on the benchmarks from existing literature, managing to find very good solutions.","PeriodicalId":273805,"journal":{"name":"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A four-Phase Meta-Heuristic Algorithm for Solving Large Scale Instances of the Shift Minimization Personnel Task Scheduling Problem\",\"authors\":\"Sebastian Nechita, L. Dioşan\",\"doi\":\"10.1109/SYNASC.2018.00067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Shift minimization personnel task scheduling problem (SMPTSP) is a known NP-hard problem. The present paper introduces a novel four-phase meta-heuristic approach for solving the Shift minimization personnel task scheduling problem which consists of an optimal assignment of jobs to multi-skilled employees, such that a minimal number of employees is used and no job is left unassigned. The computational results show that the proposed approach is able to find very good solutions in a very short time. The approach was tested and validated on the benchmarks from existing literature, managing to find very good solutions.\",\"PeriodicalId\":273805,\"journal\":{\"name\":\"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2018.00067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2018.00067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A four-Phase Meta-Heuristic Algorithm for Solving Large Scale Instances of the Shift Minimization Personnel Task Scheduling Problem
The Shift minimization personnel task scheduling problem (SMPTSP) is a known NP-hard problem. The present paper introduces a novel four-phase meta-heuristic approach for solving the Shift minimization personnel task scheduling problem which consists of an optimal assignment of jobs to multi-skilled employees, such that a minimal number of employees is used and no job is left unassigned. The computational results show that the proposed approach is able to find very good solutions in a very short time. The approach was tested and validated on the benchmarks from existing literature, managing to find very good solutions.