基于智能反射面和大规模MIMO中继的多层任务卸载

Kunlun Wang, Yong Zhou, Qingqing Wu, Wen Hua Chen, Yang Yang
{"title":"基于智能反射面和大规模MIMO中继的多层任务卸载","authors":"Kunlun Wang, Yong Zhou, Qingqing Wu, Wen Hua Chen, Yang Yang","doi":"10.1109/GLOBECOM46510.2021.9685898","DOIUrl":null,"url":null,"abstract":"This paper investigates the task offloading problem in a hybrid intelligent reflecting surface (IRS) and massive multiple-input multiple-output (MIMO) relay assisted fog computing system, where multiple task nodes (TNs) offload their computational tasks to computing nodes (CNs) nearby massive MIMO relay node (MRN) and fog access node (FAN) via the IRS for execution. By considering the practical imperfect channel state information (CSI) model, we formulate a joint task offloading, IRS phase shift optimization, and power allocation problem to minimize the total energy consumption. We solve the resultant non-convex optimization problem in three steps. First, we solve the IRS phase shift optimization problem with the semidefinite relaxation (SDR) algorithm. Then, we exploit a differential convex (DC) optimization framework to determine the power allocation decision. Given the IRS phase shifts, the computational resources, and the power allocation, we propose an alternating optimization algorithm for finding the jointly optimized results. The simulation results demonstrate the effectiveness of the proposed scheme as compared with other benchmark schemes.","PeriodicalId":200641,"journal":{"name":"2021 IEEE Global Communications Conference (GLOBECOM)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-Tier Task Offloading with Intelligent Reflecting Surface and Massive MIMO Relay\",\"authors\":\"Kunlun Wang, Yong Zhou, Qingqing Wu, Wen Hua Chen, Yang Yang\",\"doi\":\"10.1109/GLOBECOM46510.2021.9685898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the task offloading problem in a hybrid intelligent reflecting surface (IRS) and massive multiple-input multiple-output (MIMO) relay assisted fog computing system, where multiple task nodes (TNs) offload their computational tasks to computing nodes (CNs) nearby massive MIMO relay node (MRN) and fog access node (FAN) via the IRS for execution. By considering the practical imperfect channel state information (CSI) model, we formulate a joint task offloading, IRS phase shift optimization, and power allocation problem to minimize the total energy consumption. We solve the resultant non-convex optimization problem in three steps. First, we solve the IRS phase shift optimization problem with the semidefinite relaxation (SDR) algorithm. Then, we exploit a differential convex (DC) optimization framework to determine the power allocation decision. Given the IRS phase shifts, the computational resources, and the power allocation, we propose an alternating optimization algorithm for finding the jointly optimized results. The simulation results demonstrate the effectiveness of the proposed scheme as compared with other benchmark schemes.\",\"PeriodicalId\":200641,\"journal\":{\"name\":\"2021 IEEE Global Communications Conference (GLOBECOM)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Global Communications Conference (GLOBECOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOBECOM46510.2021.9685898\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Global Communications Conference (GLOBECOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM46510.2021.9685898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了智能反射面(IRS)和大规模多输入多输出(MIMO)中继辅助雾计算混合系统中的任务卸载问题,其中多个任务节点(TNs)通过IRS将其计算任务卸载到大规模MIMO中继节点(MRN)和雾访问节点(FAN)附近的计算节点(CNs)执行。考虑到实际的不完全信道状态信息(CSI)模型,提出了一种联合任务卸载、IRS相移优化和功率分配问题,以最小化总能耗。我们分三步解决由此产生的非凸优化问题。首先,我们用半定松弛(SDR)算法解决了IRS相移优化问题。然后,我们利用微分凸(DC)优化框架来确定功率分配决策。考虑到IRS相移、计算资源和功率分配,我们提出了一种交替优化算法来寻找联合优化结果。仿真结果证明了该方案与其他基准方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Tier Task Offloading with Intelligent Reflecting Surface and Massive MIMO Relay
This paper investigates the task offloading problem in a hybrid intelligent reflecting surface (IRS) and massive multiple-input multiple-output (MIMO) relay assisted fog computing system, where multiple task nodes (TNs) offload their computational tasks to computing nodes (CNs) nearby massive MIMO relay node (MRN) and fog access node (FAN) via the IRS for execution. By considering the practical imperfect channel state information (CSI) model, we formulate a joint task offloading, IRS phase shift optimization, and power allocation problem to minimize the total energy consumption. We solve the resultant non-convex optimization problem in three steps. First, we solve the IRS phase shift optimization problem with the semidefinite relaxation (SDR) algorithm. Then, we exploit a differential convex (DC) optimization framework to determine the power allocation decision. Given the IRS phase shifts, the computational resources, and the power allocation, we propose an alternating optimization algorithm for finding the jointly optimized results. The simulation results demonstrate the effectiveness of the proposed scheme as compared with other benchmark schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信