用于图像处理和卷积神经网络的傅里叶光学协处理器

M. Miscuglio, Zibo Hu, J. George, V. Sorger
{"title":"用于图像处理和卷积神经网络的傅里叶光学协处理器","authors":"M. Miscuglio, Zibo Hu, J. George, V. Sorger","doi":"10.1109/RAPID.2019.8864354","DOIUrl":null,"url":null,"abstract":"Convolution Neural Networks (CNN) are artificial networks able to extract features from large dataset by spatial filtering. Here we propose an optical coprocessor able to perform large image Altering and convolutions, outperforming current architectures.","PeriodicalId":143675,"journal":{"name":"2019 IEEE Research and Applications of Photonics in Defense Conference (RAPID)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fourier Optics Coprocessor for Image Processing and Convolutional Neural Network\",\"authors\":\"M. Miscuglio, Zibo Hu, J. George, V. Sorger\",\"doi\":\"10.1109/RAPID.2019.8864354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolution Neural Networks (CNN) are artificial networks able to extract features from large dataset by spatial filtering. Here we propose an optical coprocessor able to perform large image Altering and convolutions, outperforming current architectures.\",\"PeriodicalId\":143675,\"journal\":{\"name\":\"2019 IEEE Research and Applications of Photonics in Defense Conference (RAPID)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Research and Applications of Photonics in Defense Conference (RAPID)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RAPID.2019.8864354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Research and Applications of Photonics in Defense Conference (RAPID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAPID.2019.8864354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

卷积神经网络(CNN)是一种能够通过空间滤波从大型数据集中提取特征的人工网络。在这里,我们提出了一种光学协处理器,能够执行大图像更改和卷积,优于当前的架构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fourier Optics Coprocessor for Image Processing and Convolutional Neural Network
Convolution Neural Networks (CNN) are artificial networks able to extract features from large dataset by spatial filtering. Here we propose an optical coprocessor able to perform large image Altering and convolutions, outperforming current architectures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信