{"title":"计数不动点逻辑中唯一对策的不可逼近性","authors":"Jamie Tucker-Foltz","doi":"10.1109/LICS52264.2021.9470706","DOIUrl":null,"url":null,"abstract":"We study the extent to which it is possible to approximate the optimal value of a Unique Games instance in Fixed-Point Logic with Counting (FPC). We prove two new FPC- inexpressibility results for Unique Games: the existence of a $\\left( {\\frac{1}{2},\\frac{1}{3} + \\delta } \\right)$-inapproximability gap, and inapproximability to within any constant factor. Previous recent work has established similar FPC-inapproximability results for a small handful of other problems. Our construction builds upon some of these ideas, but contains a novel technique. While most FPC-inexpressibility results are based on variants of the CFI-construction, ours is significantly different.","PeriodicalId":174663,"journal":{"name":"2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Inapproximability of Unique Games in Fixed-Point Logic with Counting\",\"authors\":\"Jamie Tucker-Foltz\",\"doi\":\"10.1109/LICS52264.2021.9470706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the extent to which it is possible to approximate the optimal value of a Unique Games instance in Fixed-Point Logic with Counting (FPC). We prove two new FPC- inexpressibility results for Unique Games: the existence of a $\\\\left( {\\\\frac{1}{2},\\\\frac{1}{3} + \\\\delta } \\\\right)$-inapproximability gap, and inapproximability to within any constant factor. Previous recent work has established similar FPC-inapproximability results for a small handful of other problems. Our construction builds upon some of these ideas, but contains a novel technique. While most FPC-inexpressibility results are based on variants of the CFI-construction, ours is significantly different.\",\"PeriodicalId\":174663,\"journal\":{\"name\":\"2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS52264.2021.9470706\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS52264.2021.9470706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Inapproximability of Unique Games in Fixed-Point Logic with Counting
We study the extent to which it is possible to approximate the optimal value of a Unique Games instance in Fixed-Point Logic with Counting (FPC). We prove two new FPC- inexpressibility results for Unique Games: the existence of a $\left( {\frac{1}{2},\frac{1}{3} + \delta } \right)$-inapproximability gap, and inapproximability to within any constant factor. Previous recent work has established similar FPC-inapproximability results for a small handful of other problems. Our construction builds upon some of these ideas, but contains a novel technique. While most FPC-inexpressibility results are based on variants of the CFI-construction, ours is significantly different.