从二值测量中恢复块稀疏信号

Niklas Koep, R. Mathar
{"title":"从二值测量中恢复块稀疏信号","authors":"Niklas Koep, R. Mathar","doi":"10.1109/SSP.2018.8450728","DOIUrl":null,"url":null,"abstract":"We address the issue of block-sparse signal recovery from binary measurements of random projections. While a variety of recovery algorithms for sparse signals have been proposed in the context of 1-bit compressed sensing, there remains a gap in the recovery of more structured signals. We propose a convex programming approach tailored to the class of block-sparse signals, as well as an iterative method based on the binary iterative hard thresholding algorithm. We motivate the respective recovery schemes, and demonstrate their effectiveness and superior performance to previously established methods in a series of numerical experiments.","PeriodicalId":330528,"journal":{"name":"2018 IEEE Statistical Signal Processing Workshop (SSP)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Block-Sparse Signal Recovery From Binary Measurements\",\"authors\":\"Niklas Koep, R. Mathar\",\"doi\":\"10.1109/SSP.2018.8450728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the issue of block-sparse signal recovery from binary measurements of random projections. While a variety of recovery algorithms for sparse signals have been proposed in the context of 1-bit compressed sensing, there remains a gap in the recovery of more structured signals. We propose a convex programming approach tailored to the class of block-sparse signals, as well as an iterative method based on the binary iterative hard thresholding algorithm. We motivate the respective recovery schemes, and demonstrate their effectiveness and superior performance to previously established methods in a series of numerical experiments.\",\"PeriodicalId\":330528,\"journal\":{\"name\":\"2018 IEEE Statistical Signal Processing Workshop (SSP)\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Statistical Signal Processing Workshop (SSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSP.2018.8450728\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP.2018.8450728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们解决了从随机投影的二值测量中恢复块稀疏信号的问题。虽然在1位压缩感知的背景下已经提出了各种稀疏信号的恢复算法,但在更结构化的信号的恢复方面仍然存在差距。我们提出了一种针对块稀疏信号的凸规划方法,以及一种基于二元迭代硬阈值算法的迭代方法。我们对各自的恢复方案进行了激励,并通过一系列数值实验证明了它们的有效性和优于先前建立的方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Block-Sparse Signal Recovery From Binary Measurements
We address the issue of block-sparse signal recovery from binary measurements of random projections. While a variety of recovery algorithms for sparse signals have been proposed in the context of 1-bit compressed sensing, there remains a gap in the recovery of more structured signals. We propose a convex programming approach tailored to the class of block-sparse signals, as well as an iterative method based on the binary iterative hard thresholding algorithm. We motivate the respective recovery schemes, and demonstrate their effectiveness and superior performance to previously established methods in a series of numerical experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信