Youngtae Noh, Paul Wang, Uichin Lee, Dustin Torres, M. Gerla
{"title":"水下传感器网络的传输延迟感知机会MAC协议","authors":"Youngtae Noh, Paul Wang, Uichin Lee, Dustin Torres, M. Gerla","doi":"10.1109/ICNP.2010.5762767","DOIUrl":null,"url":null,"abstract":"Underwater Acoustic Sensor Networks (UW-ASNs) use acoustic links as a means of communications and are accordingly confronted with long propagation delays, low bandwidth, and high transmission power consumption. This unique situation, however, permits multiple packets to concurrently propagate in the underwater channel, which must be exploited in order to improve the overall throughput. To this end, we propose the Delay-aware Opportunistic Transmission Scheduling (DOTS) algorithm that uses passively obtained local information (i.e., neighboring nodes' propagation delay map and their expected transmission schedules) to increase the chances of concurrent transmissions while reducing the likelihood of collisions. Our extensive simulation results document that DOTS outperforms existing solutions and provides fair medium access.","PeriodicalId":344208,"journal":{"name":"The 18th IEEE International Conference on Network Protocols","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"72","resultStr":"{\"title\":\"DOTS: A propagation Delay-aware Opportunistic MAC protocol for underwater sensor networks\",\"authors\":\"Youngtae Noh, Paul Wang, Uichin Lee, Dustin Torres, M. Gerla\",\"doi\":\"10.1109/ICNP.2010.5762767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Underwater Acoustic Sensor Networks (UW-ASNs) use acoustic links as a means of communications and are accordingly confronted with long propagation delays, low bandwidth, and high transmission power consumption. This unique situation, however, permits multiple packets to concurrently propagate in the underwater channel, which must be exploited in order to improve the overall throughput. To this end, we propose the Delay-aware Opportunistic Transmission Scheduling (DOTS) algorithm that uses passively obtained local information (i.e., neighboring nodes' propagation delay map and their expected transmission schedules) to increase the chances of concurrent transmissions while reducing the likelihood of collisions. Our extensive simulation results document that DOTS outperforms existing solutions and provides fair medium access.\",\"PeriodicalId\":344208,\"journal\":{\"name\":\"The 18th IEEE International Conference on Network Protocols\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"72\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 18th IEEE International Conference on Network Protocols\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNP.2010.5762767\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 18th IEEE International Conference on Network Protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNP.2010.5762767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DOTS: A propagation Delay-aware Opportunistic MAC protocol for underwater sensor networks
Underwater Acoustic Sensor Networks (UW-ASNs) use acoustic links as a means of communications and are accordingly confronted with long propagation delays, low bandwidth, and high transmission power consumption. This unique situation, however, permits multiple packets to concurrently propagate in the underwater channel, which must be exploited in order to improve the overall throughput. To this end, we propose the Delay-aware Opportunistic Transmission Scheduling (DOTS) algorithm that uses passively obtained local information (i.e., neighboring nodes' propagation delay map and their expected transmission schedules) to increase the chances of concurrent transmissions while reducing the likelihood of collisions. Our extensive simulation results document that DOTS outperforms existing solutions and provides fair medium access.