{"title":"面向实时中止协议的重执行成本表征","authors":"Lihchyun Shu","doi":"10.1109/RTCSA.1998.726429","DOIUrl":null,"url":null,"abstract":"Abort-oriented protocols for hard real-time systems were proposed mainly to cope with the situation when block-at-most-once property provided by pure locking protocols such as priority ceiling protocol and stack resource protocol is incapable of scheduling a given transaction set due to excessive blocking. The underlying principle is to abort a transaction if it causes other higher-priority transactions unschedulable due to excessive blocking. By aborting the lower-priority transaction, what we gain is reduced blocking for higher-priority transactions, but what we must pay for is to re-execute the aborted lower-priority transaction. To guarantee schedulability for the whole transaction set, we must put an upper bound on the re-execution costs. In this paper, we use a tree-structured transaction framework adapted from Chakravarthy et al. (1998) and we roll back aborted transactions partially in an attempt to more accurately characterize and to reduce re-execution costs for aborted transactions.","PeriodicalId":142319,"journal":{"name":"Proceedings Fifth International Conference on Real-Time Computing Systems and Applications (Cat. No.98EX236)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A characterization of re-execution costs for real-time abort-oriented protocols\",\"authors\":\"Lihchyun Shu\",\"doi\":\"10.1109/RTCSA.1998.726429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abort-oriented protocols for hard real-time systems were proposed mainly to cope with the situation when block-at-most-once property provided by pure locking protocols such as priority ceiling protocol and stack resource protocol is incapable of scheduling a given transaction set due to excessive blocking. The underlying principle is to abort a transaction if it causes other higher-priority transactions unschedulable due to excessive blocking. By aborting the lower-priority transaction, what we gain is reduced blocking for higher-priority transactions, but what we must pay for is to re-execute the aborted lower-priority transaction. To guarantee schedulability for the whole transaction set, we must put an upper bound on the re-execution costs. In this paper, we use a tree-structured transaction framework adapted from Chakravarthy et al. (1998) and we roll back aborted transactions partially in an attempt to more accurately characterize and to reduce re-execution costs for aborted transactions.\",\"PeriodicalId\":142319,\"journal\":{\"name\":\"Proceedings Fifth International Conference on Real-Time Computing Systems and Applications (Cat. No.98EX236)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Fifth International Conference on Real-Time Computing Systems and Applications (Cat. No.98EX236)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTCSA.1998.726429\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Fifth International Conference on Real-Time Computing Systems and Applications (Cat. No.98EX236)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTCSA.1998.726429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A characterization of re-execution costs for real-time abort-oriented protocols
Abort-oriented protocols for hard real-time systems were proposed mainly to cope with the situation when block-at-most-once property provided by pure locking protocols such as priority ceiling protocol and stack resource protocol is incapable of scheduling a given transaction set due to excessive blocking. The underlying principle is to abort a transaction if it causes other higher-priority transactions unschedulable due to excessive blocking. By aborting the lower-priority transaction, what we gain is reduced blocking for higher-priority transactions, but what we must pay for is to re-execute the aborted lower-priority transaction. To guarantee schedulability for the whole transaction set, we must put an upper bound on the re-execution costs. In this paper, we use a tree-structured transaction framework adapted from Chakravarthy et al. (1998) and we roll back aborted transactions partially in an attempt to more accurately characterize and to reduce re-execution costs for aborted transactions.