降落伞充气过程的IB方法数值模拟

M. Miyoshi, K. Mori, Yoshiaki Nakamura
{"title":"降落伞充气过程的IB方法数值模拟","authors":"M. Miyoshi, K. Mori, Yoshiaki Nakamura","doi":"10.2322/JJSASS.57.419","DOIUrl":null,"url":null,"abstract":"In the present study the deformation and motion of a parachute in the process of inflation are simulated by applying the immersed boundary technique in a fluid-structure coupling solver. It was found from simulated results that the canopy is first inflated in the normal direction to the uniform flow (in the lateral direction), and then its apex is pulled by a vortex ring generated near the canopy’s outer surface due to its negative pressure. After the end of this inflation process, the canopy moves in the tangential direction to the spherical surface, the center of which is located at the payload location. This motion is caused by the breakup of an initial axisymmetric vortex, where many vortices are generated from the shear layer. The predicted maximum parachute opening force is twice as large as the payload force in the steady state, which is in good agreement with experiment.","PeriodicalId":144591,"journal":{"name":"Journal of The Japan Society for Aeronautical and Space Sciences","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Numerical Simulation of Parachute Inflation Process by IB Method\",\"authors\":\"M. Miyoshi, K. Mori, Yoshiaki Nakamura\",\"doi\":\"10.2322/JJSASS.57.419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present study the deformation and motion of a parachute in the process of inflation are simulated by applying the immersed boundary technique in a fluid-structure coupling solver. It was found from simulated results that the canopy is first inflated in the normal direction to the uniform flow (in the lateral direction), and then its apex is pulled by a vortex ring generated near the canopy’s outer surface due to its negative pressure. After the end of this inflation process, the canopy moves in the tangential direction to the spherical surface, the center of which is located at the payload location. This motion is caused by the breakup of an initial axisymmetric vortex, where many vortices are generated from the shear layer. The predicted maximum parachute opening force is twice as large as the payload force in the steady state, which is in good agreement with experiment.\",\"PeriodicalId\":144591,\"journal\":{\"name\":\"Journal of The Japan Society for Aeronautical and Space Sciences\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Japan Society for Aeronautical and Space Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2322/JJSASS.57.419\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Japan Society for Aeronautical and Space Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2322/JJSASS.57.419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文在流固耦合求解器中应用浸入边界技术,模拟了降落伞在膨胀过程中的变形和运动。模拟结果发现,冠层首先向法向均匀流动(侧向)充气,然后在冠层外表面附近由于负压产生的涡圈将冠层顶端拉起。在这个膨胀过程结束后,顶篷向球面切向移动,其中心位于有效载荷位置。这种运动是由初始轴对称涡的破裂引起的,其中许多涡是由剪切层产生的。在稳定状态下,预测的最大开伞力是载荷力的2倍,与实验结果吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Simulation of Parachute Inflation Process by IB Method
In the present study the deformation and motion of a parachute in the process of inflation are simulated by applying the immersed boundary technique in a fluid-structure coupling solver. It was found from simulated results that the canopy is first inflated in the normal direction to the uniform flow (in the lateral direction), and then its apex is pulled by a vortex ring generated near the canopy’s outer surface due to its negative pressure. After the end of this inflation process, the canopy moves in the tangential direction to the spherical surface, the center of which is located at the payload location. This motion is caused by the breakup of an initial axisymmetric vortex, where many vortices are generated from the shear layer. The predicted maximum parachute opening force is twice as large as the payload force in the steady state, which is in good agreement with experiment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信