基于vgg样网络和PCG信号时频联合表征的杂音检测和临床结果分类

Zhongrui Bai, Baiju Yan, Xiang-Xiang Chen, Yirong Wu, Peng Wang
{"title":"基于vgg样网络和PCG信号时频联合表征的杂音检测和临床结果分类","authors":"Zhongrui Bai, Baiju Yan, Xiang-Xiang Chen, Yirong Wu, Peng Wang","doi":"10.22489/CinC.2022.318","DOIUrl":null,"url":null,"abstract":"For the George B. Moody PhysioNet Challenge 2022, our team, PhysioDreamfly, developed a deep neural network approach for detecting murmurs and identifying abnormal clinical outcomes from phonocardiograms (PCGs). In our approach, a VGG-like CNN model is used as the classifier. Images consisting of Log-Mel spectrograms and wavelet scalogram that transformed from unsegmented PCGs are used as model inputs. We combined the murmur and outcome labels to address the two tasks as one multi-label task, and introduced a weighted focal loss function to optimize the model. Our murmur detection classifier received a weighted accuracy score of 0.752 (ranked 11th out of 40 teams) and Challenge cost score of 12831(ranked 18th out of 39 teams) on the hidden test set.","PeriodicalId":117840,"journal":{"name":"2022 Computing in Cardiology (CinC)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Murmur Detection and Clinical Outcome Classification Using a VGG-like Network and Combined Time-Frequency Representations of PCG Signals\",\"authors\":\"Zhongrui Bai, Baiju Yan, Xiang-Xiang Chen, Yirong Wu, Peng Wang\",\"doi\":\"10.22489/CinC.2022.318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the George B. Moody PhysioNet Challenge 2022, our team, PhysioDreamfly, developed a deep neural network approach for detecting murmurs and identifying abnormal clinical outcomes from phonocardiograms (PCGs). In our approach, a VGG-like CNN model is used as the classifier. Images consisting of Log-Mel spectrograms and wavelet scalogram that transformed from unsegmented PCGs are used as model inputs. We combined the murmur and outcome labels to address the two tasks as one multi-label task, and introduced a weighted focal loss function to optimize the model. Our murmur detection classifier received a weighted accuracy score of 0.752 (ranked 11th out of 40 teams) and Challenge cost score of 12831(ranked 18th out of 39 teams) on the hidden test set.\",\"PeriodicalId\":117840,\"journal\":{\"name\":\"2022 Computing in Cardiology (CinC)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Computing in Cardiology (CinC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22489/CinC.2022.318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2022.318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在2022年George B. Moody PhysioNet挑战赛中,我们的团队PhysioDreamfly开发了一种深度神经网络方法,用于检测心音,并从心音图(pcg)中识别异常临床结果。在我们的方法中,使用类似vgg的CNN模型作为分类器。使用未分割的pcg变换后的Log-Mel谱图和小波尺度图组成的图像作为模型输入。我们将杂音和结果标签结合起来,将这两个任务作为一个多标签任务来处理,并引入加权焦点损失函数来优化模型。我们的杂音检测分类器在隐藏测试集中的加权准确率得分为0.752(在40支队伍中排名第11),挑战成本得分为12831(在39支队伍中排名第18)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Murmur Detection and Clinical Outcome Classification Using a VGG-like Network and Combined Time-Frequency Representations of PCG Signals
For the George B. Moody PhysioNet Challenge 2022, our team, PhysioDreamfly, developed a deep neural network approach for detecting murmurs and identifying abnormal clinical outcomes from phonocardiograms (PCGs). In our approach, a VGG-like CNN model is used as the classifier. Images consisting of Log-Mel spectrograms and wavelet scalogram that transformed from unsegmented PCGs are used as model inputs. We combined the murmur and outcome labels to address the two tasks as one multi-label task, and introduced a weighted focal loss function to optimize the model. Our murmur detection classifier received a weighted accuracy score of 0.752 (ranked 11th out of 40 teams) and Challenge cost score of 12831(ranked 18th out of 39 teams) on the hidden test set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信