{"title":"分数驱动动态协方差建模的dcc型实现方法","authors":"Danilo Vassallo, G. Buccheri, Fulvio Corsi","doi":"10.2139/ssrn.3305628","DOIUrl":null,"url":null,"abstract":"We propose a class of score-driven realized covariance models where volatilities and correlations are separately estimated. We can thus combine univariate realized volatility models with a recently introduced class of score-driven realized covariance models based on Wishart and matrix-F distributions. The proposed models are computationally simple to estimate in high dimensions and allow complete flexibility in the choice of the univariate specification. Through a Monte-Carlo study, we show that the two-step maximum likelihood procedure provides accurate parameter estimates in small samples. Empirically, we find that the proposed models outperform joint estimations, with forecasting gains that become more significant as dimension increases.","PeriodicalId":239853,"journal":{"name":"ERN: Other Econometrics: Econometric & Statistical Methods - Special Topics (Topic)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A DCC-Type Approach for Realized Covariance Modelling With Score-Driven Dynamics\",\"authors\":\"Danilo Vassallo, G. Buccheri, Fulvio Corsi\",\"doi\":\"10.2139/ssrn.3305628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a class of score-driven realized covariance models where volatilities and correlations are separately estimated. We can thus combine univariate realized volatility models with a recently introduced class of score-driven realized covariance models based on Wishart and matrix-F distributions. The proposed models are computationally simple to estimate in high dimensions and allow complete flexibility in the choice of the univariate specification. Through a Monte-Carlo study, we show that the two-step maximum likelihood procedure provides accurate parameter estimates in small samples. Empirically, we find that the proposed models outperform joint estimations, with forecasting gains that become more significant as dimension increases.\",\"PeriodicalId\":239853,\"journal\":{\"name\":\"ERN: Other Econometrics: Econometric & Statistical Methods - Special Topics (Topic)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometrics: Econometric & Statistical Methods - Special Topics (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3305628\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Econometric & Statistical Methods - Special Topics (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3305628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A DCC-Type Approach for Realized Covariance Modelling With Score-Driven Dynamics
We propose a class of score-driven realized covariance models where volatilities and correlations are separately estimated. We can thus combine univariate realized volatility models with a recently introduced class of score-driven realized covariance models based on Wishart and matrix-F distributions. The proposed models are computationally simple to estimate in high dimensions and allow complete flexibility in the choice of the univariate specification. Through a Monte-Carlo study, we show that the two-step maximum likelihood procedure provides accurate parameter estimates in small samples. Empirically, we find that the proposed models outperform joint estimations, with forecasting gains that become more significant as dimension increases.