基于pde的正则化方法与统一框架的比较

Bochao Su, Xiaohua Zhang, Wanyu Liu, Li Li
{"title":"基于pde的正则化方法与统一框架的比较","authors":"Bochao Su, Xiaohua Zhang, Wanyu Liu, Li Li","doi":"10.1109/IMCCC.2014.114","DOIUrl":null,"url":null,"abstract":"The frequent problems in computer vision consist of de-noising, artifact elimination as well as structure preserving or enhancing. PDE-based nonlinear diffusion filter may be one possibility to achieve those goals. In this paper, we perform comparison of three typical PDE-based regularization algorithms followed by the proposal of a general framework, which exploits fundamental significance for analyzing PDE-based regularization methods.","PeriodicalId":152074,"journal":{"name":"2014 Fourth International Conference on Instrumentation and Measurement, Computer, Communication and Control","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of the PDE-Based Regularization Methods and a Unifying Framework\",\"authors\":\"Bochao Su, Xiaohua Zhang, Wanyu Liu, Li Li\",\"doi\":\"10.1109/IMCCC.2014.114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The frequent problems in computer vision consist of de-noising, artifact elimination as well as structure preserving or enhancing. PDE-based nonlinear diffusion filter may be one possibility to achieve those goals. In this paper, we perform comparison of three typical PDE-based regularization algorithms followed by the proposal of a general framework, which exploits fundamental significance for analyzing PDE-based regularization methods.\",\"PeriodicalId\":152074,\"journal\":{\"name\":\"2014 Fourth International Conference on Instrumentation and Measurement, Computer, Communication and Control\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Fourth International Conference on Instrumentation and Measurement, Computer, Communication and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMCCC.2014.114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Fourth International Conference on Instrumentation and Measurement, Computer, Communication and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMCCC.2014.114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

计算机视觉中常见的问题包括去噪、伪影消除和结构保留或增强。基于偏微分方程的非线性扩散滤波器可能是实现这些目标的一种可能性。本文对三种典型的基于pde的正则化算法进行了比较,并提出了一个通用框架,这对分析基于pde的正则化方法具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of the PDE-Based Regularization Methods and a Unifying Framework
The frequent problems in computer vision consist of de-noising, artifact elimination as well as structure preserving or enhancing. PDE-based nonlinear diffusion filter may be one possibility to achieve those goals. In this paper, we perform comparison of three typical PDE-based regularization algorithms followed by the proposal of a general framework, which exploits fundamental significance for analyzing PDE-based regularization methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信