Huajun Li, H. Ji, C. Fu, Baoliang Wang, Zhiyao Huang, Haiqing Li
{"title":"基于光电二极管阵列传感器的小通道泰勒流参数测量系统","authors":"Huajun Li, H. Ji, C. Fu, Baoliang Wang, Zhiyao Huang, Haiqing Li","doi":"10.1109/I2MTC.2015.7151390","DOIUrl":null,"url":null,"abstract":"Based on photodiode array sensors, a new parameter measurement system of gas-liquid Taylor flow in small channels is developed with cross-correlation technique and support vector regression technique. In this system, the laser signals are obtained by two photodiode array sensors. Combined with the cross-correlation technique, the velocity of bubble is determined by the signals of the two sensors. Further, a void fraction model is developed by support vector regression technique with the signals obtained by one sensor, and then the void fraction measurement is implemented. Experiments are carried out in small channel with the inner diameter of 4.04mm. The experimental results show that the developed measurement system of Taylor flow in small channels is successful and effective. The maximum relative difference of the velocity measurement is less than 5% and the maximum relative difference of the void fraction measurement is less than 10%.","PeriodicalId":424006,"journal":{"name":"2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameter measurement system of Taylor flow in small channels based on photodiode array sensors\",\"authors\":\"Huajun Li, H. Ji, C. Fu, Baoliang Wang, Zhiyao Huang, Haiqing Li\",\"doi\":\"10.1109/I2MTC.2015.7151390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on photodiode array sensors, a new parameter measurement system of gas-liquid Taylor flow in small channels is developed with cross-correlation technique and support vector regression technique. In this system, the laser signals are obtained by two photodiode array sensors. Combined with the cross-correlation technique, the velocity of bubble is determined by the signals of the two sensors. Further, a void fraction model is developed by support vector regression technique with the signals obtained by one sensor, and then the void fraction measurement is implemented. Experiments are carried out in small channel with the inner diameter of 4.04mm. The experimental results show that the developed measurement system of Taylor flow in small channels is successful and effective. The maximum relative difference of the velocity measurement is less than 5% and the maximum relative difference of the void fraction measurement is less than 10%.\",\"PeriodicalId\":424006,\"journal\":{\"name\":\"2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/I2MTC.2015.7151390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2MTC.2015.7151390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Parameter measurement system of Taylor flow in small channels based on photodiode array sensors
Based on photodiode array sensors, a new parameter measurement system of gas-liquid Taylor flow in small channels is developed with cross-correlation technique and support vector regression technique. In this system, the laser signals are obtained by two photodiode array sensors. Combined with the cross-correlation technique, the velocity of bubble is determined by the signals of the two sensors. Further, a void fraction model is developed by support vector regression technique with the signals obtained by one sensor, and then the void fraction measurement is implemented. Experiments are carried out in small channel with the inner diameter of 4.04mm. The experimental results show that the developed measurement system of Taylor flow in small channels is successful and effective. The maximum relative difference of the velocity measurement is less than 5% and the maximum relative difference of the void fraction measurement is less than 10%.