涡流测试的数据增强和人工神经网络

R. Cormerais, R. Longo, A. Duclos, G. Wasselynck, G. Berthiau
{"title":"涡流测试的数据增强和人工神经网络","authors":"R. Cormerais, R. Longo, A. Duclos, G. Wasselynck, G. Berthiau","doi":"10.3233/saem200040","DOIUrl":null,"url":null,"abstract":"Eddy Currents (ECs) Non Destructive Testing (NDT) is widely used to determine the position and size of flaws in metal materials. Due to difficulties in estimating these parameters via inverse algorithms based on physical models, approaches focused on Artificial Neural Network (ANN) are nowadays of great interest. The main drawbacks of these techniques still reside in the complexity of the numerical models and the large number of simulated data needed to train and test the ANN, leading to a considerable amount of calculation time and resources. To overcome these limitations, this article proposes a new approach based on a data augmentation procedure via Principal Component Analysis (PCA) applied to numerical simulations.","PeriodicalId":296740,"journal":{"name":"Studies in Applied Electromagnetics and Mechanics","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data Augmentation and Artificial Neural Networks for Eddy Currents Testing\",\"authors\":\"R. Cormerais, R. Longo, A. Duclos, G. Wasselynck, G. Berthiau\",\"doi\":\"10.3233/saem200040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Eddy Currents (ECs) Non Destructive Testing (NDT) is widely used to determine the position and size of flaws in metal materials. Due to difficulties in estimating these parameters via inverse algorithms based on physical models, approaches focused on Artificial Neural Network (ANN) are nowadays of great interest. The main drawbacks of these techniques still reside in the complexity of the numerical models and the large number of simulated data needed to train and test the ANN, leading to a considerable amount of calculation time and resources. To overcome these limitations, this article proposes a new approach based on a data augmentation procedure via Principal Component Analysis (PCA) applied to numerical simulations.\",\"PeriodicalId\":296740,\"journal\":{\"name\":\"Studies in Applied Electromagnetics and Mechanics\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Applied Electromagnetics and Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/saem200040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Electromagnetics and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/saem200040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

涡流无损检测被广泛用于金属材料中缺陷的位置和尺寸的检测。由于难以通过基于物理模型的逆算法估计这些参数,以人工神经网络(ANN)为重点的方法目前备受关注。这些技术的主要缺点仍然在于数值模型的复杂性和训练和测试人工神经网络所需的大量模拟数据,导致大量的计算时间和资源。为了克服这些限制,本文提出了一种基于主成分分析(PCA)的数据增强程序的新方法,该方法应用于数值模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data Augmentation and Artificial Neural Networks for Eddy Currents Testing
Eddy Currents (ECs) Non Destructive Testing (NDT) is widely used to determine the position and size of flaws in metal materials. Due to difficulties in estimating these parameters via inverse algorithms based on physical models, approaches focused on Artificial Neural Network (ANN) are nowadays of great interest. The main drawbacks of these techniques still reside in the complexity of the numerical models and the large number of simulated data needed to train and test the ANN, leading to a considerable amount of calculation time and resources. To overcome these limitations, this article proposes a new approach based on a data augmentation procedure via Principal Component Analysis (PCA) applied to numerical simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信