室内环境下实时边缘计算占用率估计方法研究

Anirban Das, R. Gupta, Suchetana Chakraborty
{"title":"室内环境下实时边缘计算占用率估计方法研究","authors":"Anirban Das, R. Gupta, Suchetana Chakraborty","doi":"10.1109/COMSNETS48256.2020.9027463","DOIUrl":null,"url":null,"abstract":"Sensing the presence of occupants and estimating the occupancy level in an indoor environment are the fundamental requirements for various applications performing remote monitoring, home automation and optimal resource planning. Data generated from a set of passive heterogeneous sensors deployed for this purpose are multimodal and streaming in nature. This work aims to formulate the human occupancy estimation in an indoor environment as a multi-class problem and proposes a edge-based data management framework for human occupancy estimation. The proposed framework is low-cost and light-weight in addition to being capable of performing real-time inference. Also testbed experimentation results is provided to justify the performance of the proposed scheme.","PeriodicalId":265871,"journal":{"name":"2020 International Conference on COMmunication Systems & NETworkS (COMSNETS)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Study on Real-Time Edge Computed Occupancy Estimation in an Indoor Environment\",\"authors\":\"Anirban Das, R. Gupta, Suchetana Chakraborty\",\"doi\":\"10.1109/COMSNETS48256.2020.9027463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sensing the presence of occupants and estimating the occupancy level in an indoor environment are the fundamental requirements for various applications performing remote monitoring, home automation and optimal resource planning. Data generated from a set of passive heterogeneous sensors deployed for this purpose are multimodal and streaming in nature. This work aims to formulate the human occupancy estimation in an indoor environment as a multi-class problem and proposes a edge-based data management framework for human occupancy estimation. The proposed framework is low-cost and light-weight in addition to being capable of performing real-time inference. Also testbed experimentation results is provided to justify the performance of the proposed scheme.\",\"PeriodicalId\":265871,\"journal\":{\"name\":\"2020 International Conference on COMmunication Systems & NETworkS (COMSNETS)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on COMmunication Systems & NETworkS (COMSNETS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMSNETS48256.2020.9027463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on COMmunication Systems & NETworkS (COMSNETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMSNETS48256.2020.9027463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

感知居住者的存在并估计室内环境中的占用水平是执行远程监控,家庭自动化和最佳资源规划的各种应用的基本要求。为此目的部署的一组被动异构传感器产生的数据是多模态的,本质上是流的。本研究旨在将室内环境中人的占用率估计作为一个多类问题来阐述,并提出了一个基于边缘的人的占用率估计数据管理框架。所提出的框架除了能够执行实时推理外,还具有低成本和轻量级的特点。最后给出了实验结果,验证了该方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Study on Real-Time Edge Computed Occupancy Estimation in an Indoor Environment
Sensing the presence of occupants and estimating the occupancy level in an indoor environment are the fundamental requirements for various applications performing remote monitoring, home automation and optimal resource planning. Data generated from a set of passive heterogeneous sensors deployed for this purpose are multimodal and streaming in nature. This work aims to formulate the human occupancy estimation in an indoor environment as a multi-class problem and proposes a edge-based data management framework for human occupancy estimation. The proposed framework is low-cost and light-weight in addition to being capable of performing real-time inference. Also testbed experimentation results is provided to justify the performance of the proposed scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信