基于最确定和最不确定标签选择的混合主动学习模型

Simranjeet Kaur, Anshu Singla
{"title":"基于最确定和最不确定标签选择的混合主动学习模型","authors":"Simranjeet Kaur, Anshu Singla","doi":"10.1109/PDGC.2018.8745769","DOIUrl":null,"url":null,"abstract":"In order to correctly classify the huge amount of unlabeled data, supervised classification paradigms necessitated the requirement of labeled data. But the availability of labeled data is too scarce and labeling is too expensive. To decrease the human labeling efforts, through selecting the much meaningful data from unlabeled data and add to label data, active learning techniques have been proven to be efficient. Active Learning is based on the principle of selection of most uncertain and non-redundant instances in each iteration. In this paper, authors have considered not only the most uncertain instances but also the most certain instances have been selected which helped in improving the efficiency of learning model. Extensive experiment has been carried out on different datasets to confirm the effectiveness of proposed model.","PeriodicalId":303401,"journal":{"name":"2018 Fifth International Conference on Parallel, Distributed and Grid Computing (PDGC)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybridized Active Learning Model Based On Most Certain and Uncertain Label Selection\",\"authors\":\"Simranjeet Kaur, Anshu Singla\",\"doi\":\"10.1109/PDGC.2018.8745769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to correctly classify the huge amount of unlabeled data, supervised classification paradigms necessitated the requirement of labeled data. But the availability of labeled data is too scarce and labeling is too expensive. To decrease the human labeling efforts, through selecting the much meaningful data from unlabeled data and add to label data, active learning techniques have been proven to be efficient. Active Learning is based on the principle of selection of most uncertain and non-redundant instances in each iteration. In this paper, authors have considered not only the most uncertain instances but also the most certain instances have been selected which helped in improving the efficiency of learning model. Extensive experiment has been carried out on different datasets to confirm the effectiveness of proposed model.\",\"PeriodicalId\":303401,\"journal\":{\"name\":\"2018 Fifth International Conference on Parallel, Distributed and Grid Computing (PDGC)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Fifth International Conference on Parallel, Distributed and Grid Computing (PDGC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDGC.2018.8745769\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Fifth International Conference on Parallel, Distributed and Grid Computing (PDGC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDGC.2018.8745769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了对大量未标注数据进行正确分类,监督分类范式对标注数据提出了要求。但是标记数据的可用性太过稀缺,而标记又太过昂贵。为了减少人工标注的工作量,主动学习技术通过从未标注数据中选择更有意义的数据并添加到标注数据中,已经被证明是有效的。主动学习是基于每次迭代中选择最不确定和最不冗余实例的原则。在本文中,作者既考虑了最不确定的实例,又选择了最确定的实例,这有助于提高学习模型的效率。在不同的数据集上进行了大量的实验,以验证所提出模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybridized Active Learning Model Based On Most Certain and Uncertain Label Selection
In order to correctly classify the huge amount of unlabeled data, supervised classification paradigms necessitated the requirement of labeled data. But the availability of labeled data is too scarce and labeling is too expensive. To decrease the human labeling efforts, through selecting the much meaningful data from unlabeled data and add to label data, active learning techniques have been proven to be efficient. Active Learning is based on the principle of selection of most uncertain and non-redundant instances in each iteration. In this paper, authors have considered not only the most uncertain instances but also the most certain instances have been selected which helped in improving the efficiency of learning model. Extensive experiment has been carried out on different datasets to confirm the effectiveness of proposed model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信