基于裁剪域自适应的机器翻译质量估计

Javad Pourmostafa Roshan Sharami, D. Shterionov, F. Blain, Eva Vanmassenhove, M. D. Sisto, Chris Emmery, P. Spronck
{"title":"基于裁剪域自适应的机器翻译质量估计","authors":"Javad Pourmostafa Roshan Sharami, D. Shterionov, F. Blain, Eva Vanmassenhove, M. D. Sisto, Chris Emmery, P. Spronck","doi":"10.48550/arXiv.2304.08891","DOIUrl":null,"url":null,"abstract":"While quality estimation (QE) can play an important role in the translation process, its effectiveness relies on the availability and quality of training data. For QE in particular, high-quality labeled data is often lacking due to the high-cost and effort associated with labeling such data. Aside from the data scarcity challenge, QE models should also be generalizabile, i.e., they should be able to handle data from different domains, both generic and specific. To alleviate these two main issues — data scarcity and domain mismatch — this paper combines domain adaptation and data augmentation within a robust QE system. Our method is to first train a generic QE model and then fine-tune it on a specific domain while retaining generic knowledge. Our results show a significant improvement for all the language pairs investigated, better cross-lingual inference, and a superior performance in zero-shot learning scenarios as compared to state-of-the-art baselines.","PeriodicalId":137211,"journal":{"name":"European Association for Machine Translation Conferences/Workshops","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Tailoring Domain Adaptation for Machine Translation Quality Estimation\",\"authors\":\"Javad Pourmostafa Roshan Sharami, D. Shterionov, F. Blain, Eva Vanmassenhove, M. D. Sisto, Chris Emmery, P. Spronck\",\"doi\":\"10.48550/arXiv.2304.08891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While quality estimation (QE) can play an important role in the translation process, its effectiveness relies on the availability and quality of training data. For QE in particular, high-quality labeled data is often lacking due to the high-cost and effort associated with labeling such data. Aside from the data scarcity challenge, QE models should also be generalizabile, i.e., they should be able to handle data from different domains, both generic and specific. To alleviate these two main issues — data scarcity and domain mismatch — this paper combines domain adaptation and data augmentation within a robust QE system. Our method is to first train a generic QE model and then fine-tune it on a specific domain while retaining generic knowledge. Our results show a significant improvement for all the language pairs investigated, better cross-lingual inference, and a superior performance in zero-shot learning scenarios as compared to state-of-the-art baselines.\",\"PeriodicalId\":137211,\"journal\":{\"name\":\"European Association for Machine Translation Conferences/Workshops\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Association for Machine Translation Conferences/Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2304.08891\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Association for Machine Translation Conferences/Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2304.08891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

虽然质量估计(QE)在翻译过程中发挥着重要作用,但其有效性取决于训练数据的可用性和质量。特别是对于QE,由于与标记此类数据相关的高成本和工作量,通常缺乏高质量的标记数据。除了数据稀缺的挑战之外,QE模型还应该具有通用性,也就是说,它们应该能够处理来自不同领域的数据,无论是通用的还是特定的。为了缓解这两个主要问题-数据稀缺性和领域不匹配-本文结合了领域适应和数据扩充在一个鲁棒QE系统。我们的方法是首先训练一个通用的QE模型,然后在保留通用知识的同时对其在特定领域进行微调。我们的研究结果显示,与最先进的基线相比,所有被调查的语言对都有显著改善,跨语言推理更好,并且在零射击学习场景中表现优异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tailoring Domain Adaptation for Machine Translation Quality Estimation
While quality estimation (QE) can play an important role in the translation process, its effectiveness relies on the availability and quality of training data. For QE in particular, high-quality labeled data is often lacking due to the high-cost and effort associated with labeling such data. Aside from the data scarcity challenge, QE models should also be generalizabile, i.e., they should be able to handle data from different domains, both generic and specific. To alleviate these two main issues — data scarcity and domain mismatch — this paper combines domain adaptation and data augmentation within a robust QE system. Our method is to first train a generic QE model and then fine-tune it on a specific domain while retaining generic knowledge. Our results show a significant improvement for all the language pairs investigated, better cross-lingual inference, and a superior performance in zero-shot learning scenarios as compared to state-of-the-art baselines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信