基于Faster R-CNN模型和SSD模型的高分辨率遥感图像飞机检测

Qifang Xie, Guoqing Yao, Ping Liu
{"title":"基于Faster R-CNN模型和SSD模型的高分辨率遥感图像飞机检测","authors":"Qifang Xie, Guoqing Yao, Ping Liu","doi":"10.1145/3191442.3191443","DOIUrl":null,"url":null,"abstract":"With the continuous improvement of the space resolution in remote sensing images, the rapid and accurate detection in high-resolution remote sensing images has become a hotspot in the field of remote sensing application. For nearly 10 years, deep learning has made outstanding achievements in the feature extraction of original image and received attention of a large number of scholars. Among them, the convolutional neural network (CNN) has made breakthrough progress in the field of image classification and detection, and has overcome three shortcomings of the original remote sensing image detection method: low detection efficiency, redundant human resource input, and flawed feature selection. In this paper, Faster R-CNN model and SSD model are trained by high-resolution remote sensing images. The appropriate training time is determined by the detection results of verification set and the loss function. When we get trained models, it will be used to detect the test set images, and the accuracy rate and recall rate of two models were calculated by visual interpretation method. The experimental results show that both the Faster R-CNN model and the SSD model can be applied to aircraft detection in corresponding high-resolution remote sensing images. The SSD model can detect the single scene aircraft quickly and accurately. The Faster R-CNN model has a high accuracy but cannot reach the requirement of real-time detection. Besides, the accuracy rate and recall rate of Faster R-CNN model was significantly higher than the SSD model in the complex scenes, and the Faster R-CNN model has a great advantage for the detection of small aircraft.","PeriodicalId":149627,"journal":{"name":"International Conference on Image and Graphics Processing","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Aircraft Detection of High-Resolution Remote Sensing Image Based on Faster R-CNN Model and SSD Model\",\"authors\":\"Qifang Xie, Guoqing Yao, Ping Liu\",\"doi\":\"10.1145/3191442.3191443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the continuous improvement of the space resolution in remote sensing images, the rapid and accurate detection in high-resolution remote sensing images has become a hotspot in the field of remote sensing application. For nearly 10 years, deep learning has made outstanding achievements in the feature extraction of original image and received attention of a large number of scholars. Among them, the convolutional neural network (CNN) has made breakthrough progress in the field of image classification and detection, and has overcome three shortcomings of the original remote sensing image detection method: low detection efficiency, redundant human resource input, and flawed feature selection. In this paper, Faster R-CNN model and SSD model are trained by high-resolution remote sensing images. The appropriate training time is determined by the detection results of verification set and the loss function. When we get trained models, it will be used to detect the test set images, and the accuracy rate and recall rate of two models were calculated by visual interpretation method. The experimental results show that both the Faster R-CNN model and the SSD model can be applied to aircraft detection in corresponding high-resolution remote sensing images. The SSD model can detect the single scene aircraft quickly and accurately. The Faster R-CNN model has a high accuracy but cannot reach the requirement of real-time detection. Besides, the accuracy rate and recall rate of Faster R-CNN model was significantly higher than the SSD model in the complex scenes, and the Faster R-CNN model has a great advantage for the detection of small aircraft.\",\"PeriodicalId\":149627,\"journal\":{\"name\":\"International Conference on Image and Graphics Processing\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Image and Graphics Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3191442.3191443\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Image and Graphics Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3191442.3191443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aircraft Detection of High-Resolution Remote Sensing Image Based on Faster R-CNN Model and SSD Model
With the continuous improvement of the space resolution in remote sensing images, the rapid and accurate detection in high-resolution remote sensing images has become a hotspot in the field of remote sensing application. For nearly 10 years, deep learning has made outstanding achievements in the feature extraction of original image and received attention of a large number of scholars. Among them, the convolutional neural network (CNN) has made breakthrough progress in the field of image classification and detection, and has overcome three shortcomings of the original remote sensing image detection method: low detection efficiency, redundant human resource input, and flawed feature selection. In this paper, Faster R-CNN model and SSD model are trained by high-resolution remote sensing images. The appropriate training time is determined by the detection results of verification set and the loss function. When we get trained models, it will be used to detect the test set images, and the accuracy rate and recall rate of two models were calculated by visual interpretation method. The experimental results show that both the Faster R-CNN model and the SSD model can be applied to aircraft detection in corresponding high-resolution remote sensing images. The SSD model can detect the single scene aircraft quickly and accurately. The Faster R-CNN model has a high accuracy but cannot reach the requirement of real-time detection. Besides, the accuracy rate and recall rate of Faster R-CNN model was significantly higher than the SSD model in the complex scenes, and the Faster R-CNN model has a great advantage for the detection of small aircraft.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信